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Abstract

This article introduces an idea for summarizing of the stance of monetary pol-
icy with quantities derived from a class of yield curve models that respect the zero
lower bound constraint for interest rates. The “Effective Monetary Stimulus” ag-
gregates the current and estimated expected path of interest rates relative to the
neutral interest rate from the yield curve model. Unlike shadow short rates, Effec-
tive Monetary Stimulus measures are consistent and comparable across conventional
and unconventional monetary policy environments, and are less subject to variation
with modeling choices, as I demonstrate with two and three factor models estimated
with different data sets. Full empirical testing of the inter-relationships between Ef-
fective Monetary Stimulus measures and macroeconomic data remains a topic for
future work.
JEL: E43, E52, G12
Keywords: unconventional monetary policy; zero lower bound; shadow short

rate; term structure model

1 Introduction

This article proposes a new measure of the stance of monetary policy derived from
shadow/zero lower bound (ZLB) yield curve models. The motivation for what I call
the “Effective Monetary Stimulus” (EMS measure) is to improve on aspects that have
been questioned regarding the use of shadow short rates (SSRs) as a summary metric for
the stance of unconventional monetary policy. The EMS measure also offers improvements
on an alternative metric, i.e. the horizon to non-zero policy rates.
As background, SSRs obtained from shadow/ZLB yield curve models have been pro-

posed as a measure of the stance of monetary policy in Krippner (2011, 2012, 2013b,d)
as cited by Bullard (2012, 2013), and Wu and Xia (2013) as cited by Hamilton (2013)
and Higgins and Meyer (2013) The proposal has intuitive appeal because when the SSR
is positive it equals the actual short rate, but the SSR is free to evolve to negative lev-
els after the actual short rate becomes constrained by the ZLB. Figure 1 illustrates the
concept for the U.S. Federal Funds Rate (FFR) and an estimated shadow short rate from
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December 2008, when the FFR was set to a 0-0.25% target range. In essence, the SSR
evolves like the short rate that would prevail in the absence of physical currency,1 and so
it can be used as an indicator of further policy easing beyond the zero policy rate. Quan-
titatively, comparing the unconventional/ZLB and conventional/pre-ZLB periods for the
U.S., Claus, Claus, and Krippner (2013) show that the SSR responds to monetary policy
shocks similarly to the FFR, and Wu and Xia (2013) show that the effects of the SSR on
macroeconomic variables are similar to the FFR.

Figure 1: The Federal Funds Rate (FFR) and the estimated shadow short rate (SSR) from
December 2008. The ZLB constrains the FFR essentially at zero, while the SSR can freely

evolve to negative levels.

Nevertheless, negative SSRs are necessarily estimated quantities, and so they will vary
with the practical choices underlying their estimation. In particular, it has been well-
established in Christensen and Rudebusch (2013a,b), Bauer and Rudebusch (2013), and
Krippner (2013d) that SSR estimates can be materially sensitive to the following choices:
(1) the specification of the shadow/ZLB model (e.g. Black (1995) or Krippner (2011,
2012, 2013), two or three factors, parameter restrictions on the mean-reversion matrix,
etc.); (2) the data used for estimation (e.g. using yield curve data out to maturities of 10
year or 30 years, and the sample period); and (3) the method used for estimation (e.g.
the extended, iterated extended, or the unscented Kalman filters).2

In addition, from an economic perspective, negative shadow rates are not an actual
interest rate faced by economic agents. That is, borrowers face current and expected
interest rates that are based on the ZLB constraint (with appropriate margins), not neg-
ative interest rates (which would result in borrowers being paid the absolute interest
rate by investors). As such, SSRs are not consistent and directly comparable across
conventional/non-ZLB and unconventional/ZLB environments. To highlight this point,

1Physical currency effectively sets the ZLB for interest rates because it is always available as an
alternative investment to bonds, but with a zero rate of return.

2Longer maturity spans and estimation with the iterated extended Kalman filter produce more negative
SSR estimates; see Krippner (2013d).
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figure 2 illustrates that easing the SSR from 5 to 0 percent provides more monetary policy
stimulus than easing the SSR from 0 to -5 percent, because the entire yield curve moves
down markedly in first case but the ZLB constrains declines in short- and mid-maturity
interest rates in the second case.3
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Figure 2: ZLB yield curves and shadow yield curves (dotted lines below ZLB yield curves) for
different values of the SSR, while keeping the long-run yields constant. Monetary policy

stimulus from the ZLB yield curve (i.e. declines in actual interest rates) is attenuated when
the SSR adopts negative values.

As an alternative metric for unconventional monetary policy, Bauer and Rudebusch
(2013) propose the “lift-offhorizon”, i.e. the median time for simulated future actual short
rates from the estimated shadow/ZLB model to reach 0.25 percent. The lift-off horizon
has proven more robust than the SSR to different model specifications, and it also provides
a probabilistic summary measure of actual interest rates faced by economic agents for the
given horizon, rather than the non-obtainable and therefore less economically relevant
negative SSRs. However, the lift-off horizon does not provide an indication of what
economic agents will face for longer horizons into the future, which should also influence
their decisions, and neither does it have a conventional counterpart for comparison across
non-ZLB and ZLB environments.
The EMS measure that I propose improves on the SSR and the lift-off horizon by

directly summarizing current and expected actual interest rates relative to the neutral
interest rate. Specifically, I obtain the expected path of the actual short rate and its
long-run expectation from a shadow/ZLB Gaussian affi ne term structure model (hereafter
GATSM) of the yield curve and then integrate the difference between those quantities over
the horizon from zero to infinity. In ZLB periods, short rate expectations will initially
include a period of zero followed by an non-zero path that converges to the long-run
expectation, and in non-ZLB periods the expected path of the short rate is entirely non-
zero as it converges to the long-run expectation. However, in both regimes, the EMS

3Figure 9 latter provides a more detailed perspective on how monetary policy stimulus attentuates as
a function of the SSR.
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measure aggregates expected short rates relative to their long-run expectation from the
same estimated model, and so the EMS measure is directly comparable between ZLB and
non-ZLB periods. The practical advantage of EMS measures is their robustness relative
to SSRs; i.e. the EMS measures obtained from shadow/ZLB-GATSMs with two and three
factors estimated with different data turn out to be very similar, while the corresponding
SSR estimates are quite different.
The article proceeds as follows. Section 2 provides an overview of the Krippner (2011,

2012, 2013) and Black (1995) shadow/ZLB-GATSMs, respectively the K-GATSM and
B-GATSM hereafter.4 In section 3, I first outline how EMS measures may be obtained
using the shadow-GATSM from either the K-GATSM or B-GATSM, and then apply the
EMS framework to the K-GATSM results under the risk-adjusted measure from Krippner
(2013d). Section 4 introduces and illustrates EMS measures under the physical measure.
Section 5 discusses some ideas related to the EMS measure to follow up in future work,
including potential improvements, empirical testing, and some conceptual questions. Sec-
tion 6 concludes.

2 Overview of shadow/ZLB-GATSMs

In this section, I provide an overview of the K-GATSM and B-GATSM classes of models.
The main objective from the perspective of the present article is to establish notation
for the shadow-GATSM, which contains the component subsequently used to define the
EMS measures in sections 3 and 5. I also briefly discuss in section 2.2 how the models
may be estimated in principle so it is apparent how observed yield curve data and the
specified model defines the EMS measures. Details and examples of actual estimations
are available from the given references; in this article I simply use the results already
available from Krippner (2013d) and some supplementary estimations to illustrate EMS
measures in practice.

2.1 The shadow-GATSM term structure

I adopt the generic GATSM specification from Dai and Singleton (2002) pp. 437-38 to
define the shadow-GATSM. Hence, the SSR is:

r (t) = a0 + b′0 x (t) (1)

where a0 is a constant, b0 is a constant N×1 vector containing the weights for the N state
variables xn (t), and x (t) is an N×1 vector containing the N state variables xn (t). Under
the physical Pmeasure, x (t) evolves as the following correlated vector Ornstein-Uhlenbeck
process:

dx (t) = κ [θ − x (t)] dt+ σdW (t) (2)

where θ is a constant N × 1 vector representing the long-run level of x (t), κ is a constant
N ×N matrix that governs the deterministic mean reversion of x (t) to θ, σ is a constant
N ×N matrix representing the potentially correlated volatilities of x (t), and dW (t) is an
N ×1 vector with independent Wiener components dWn (t) ∼ N (0, 1)

√
dt. From Meucci

4The Wu and Xia (2013) model is a discrete-time version of the K-GATSM, although it is derived
differently.
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(2010) p. 3, the solution for the stochastic differential equation is:

x (t+ τ) = θ + exp (−κτ) [x (t)− θ] +

∫ t+τ

t

exp (−κ [τ − u])σdW (u) (3)

which gives the following expectation, as at time t, under the P measure (also see Dai and
Singleton (2002) p. 438):

Et [x (t+ τ)] = θ + exp (−κτ) [x (t)− θ] (4)

Therefore, what I will call the expected path of the SSR under the Pmeasure, Et [r (t+ τ)],
is:

Et [r (t+ τ)] = a0 + b′0Et [x (t+ τ)]

= a0 + b′0 {θ + exp (−κτ) [x (t)− θ]} (5)

Note that the current SSR, r(t), is contained in Et [r (t+ τ)], i.e.:

Et [r (t+ τ)]|τ=0 = a0 + b′0x (t) = r (t) (6)

and so the current and expected SSRs do not need to be referred to separately (which
also holds for Ẽt [r (t+ τ)] below).
The market prices of risk are linear with respect to the state variables, i.e.:5

Π (t) = σ−1 [γ + Γx (t)] (7)

where γ and Γ are respectively a constant N × 1 vector and constant N ×N matrix. The
risk-adjusted process for x (t) is:

dx (t) = κ̃
[
θ̃ − x (t)

]
dt+ σdW̃ (t) (8)

where κ̃ = κ+ Γ and θ̃ = κ̃−1 (κθ − γ).
Shadow forward rates for the shadow-GATSM are:

f (t, τ) = Ẽt [r (t+ τ)] +VE (τ) (9)

where Ẽt [r (t+ τ)] is the expected path of the SSR under the risk-adjusted Q measure:

Ẽt [r (t+ τ)] = a0 + b′0

{
θ̃ + exp (−κ̃τ)

[
x (t)− θ̃

]}
(10)

and VE(τ) is the forward rate volatility effect from Krippner (2013d) appendix I:

VE (τ) =
1

2

[∫ τ

0

b′0 exp (−κ̃τ) ds
]
σσ′

[∫ τ

0

exp (−κ̃′τ) b0 ds
]

(11)

The expression for shadow interest rates R(t, τ) is defined using the standard continuous-
time term structure relationships,6 i.e.:

R (t, τ) =
1

τ

∫ τ

0

f (t, u) du (12)

5This is the “essentially affi ne”specification from Duffee (2002), but for a model with full Gaussian
dynamics. Also see Cheridito, Filipovíc, and Kimmel (2007) for further discussion on market price of risk
specifications.

6References for this standard term structure relationship and others I use subsequently in the article
are, for example, Filipovíc (2009) p. 7 or James and Webber (2000) chapter 3.
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2.2 ZLB-GATSM term structures and estimation

K-GATSM forward rates are defined as (see Krippner (2013d) p. 16):

f
¯

(t, τ) = f (t, τ) · Φ
[
f (t, τ)

ω (τ)

]
+ ω (τ) · 1√

2π
exp

(
−1

2

[
f (t, τ)

ω (τ)

]2)
(13)

and R
¯

(t, τ) is obtained using the standard term structure relationship:

R
¯

(t, τ) =
1

τ

∫ τ

0

f
¯

(t, u) du (14)

which is straightforward to evaluate with univariate numerical integration over time to
maturity τ . The K-GATSM has already been established as an empirically acceptable
approximation to the B-GATSM (which imposes the ZLB in a fully arbitrage-free way),
but the relative tractability of the K-GATSMmakes it much quicker to apply; see Krippner
(2013d), Christensen and Rudebusch (2013a,b), and Wu and Xia (2013).
B-GATSM bond prices may be defined generically as (see Krippner (2013d) p. 6):

P
¯
B (t, τ) = Ẽt

{
exp

(
−
∫ τ

0

max {0, r (t+ u)} du
)}

(15)

and R
¯
B (t, τ) is obtained using the standard term structure relationship:

R
¯
B (t, τ) = −1

τ
logP

¯
B (t, τ) (16)

In practice, interest rates for multifactor B-GATSM implementations have been obtained
using the multivariate numerical methods of finite-difference grids, interest rate lattices,
and Monte Carlo simulations; e.g. see Bomfim (2003), Ueno, Baba, and Sakurai (2006),
Ichiue and Ueno (2007), Kim and Singleton (2012), Ichiue and Ueno (2013), Bauer and
Rudebusch (2013), and Richard (2013).7 Recent advances in Priebsch (2013) and Krippner
(2013a) offer faster B-GATSM implementations, respectively via a close second-order ap-
proximation, and Monte Carlo simulation with a control variate based on the K-GATSM.
Regarding estimation, the state equation for both the K-GATSM and B-GATSM is:

xt+1 = θ + exp (−κ∆t) (xt − θ) + εt+1 (17)

where∆t is the time increment between observations, the subscript t is an integer index for
the time series of term structure observations, and εt+1 is the N × 1 vector of innovations
to the state variables. The measurement equation for both the K-GATSM and B-GATSM
is:

R
¯ t

= R
¯

(xt,A) + ηt (18)

where R
¯ t
is the K × 1 vector of interest rate data at time index t, R

¯
(xt,A) is the K × 1

vector of shadow/ZLB-GATSM rates with A denoting the parameters already noted in
7Gorovoi and Linetsky (2004) develops a semi-analytic solution for one factor B-GATSMs, which has

been applied in Ichiue and Ueno (2006) and Ueno, Baba, and Sakurai (2006).
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section 2.1, and ηt is the K × 1 vector of components unexplained by the shadow/ZLB-
GATSM.8 The K-GATSM uses interest rates defined by equation 14 in equation 18, while
the B-GATSM uses interest rates defined by equation 16 in equation 18.
The state space representation has been estimated with the extended, iterated ex-

tended, or unscented Kalman filters (e.g. see Kim and Singleton (2012), Krippner (2013d),
and Kim and Priebsch (2013) respectively). Christensen and Rudebusch (2013a, b),
Krippner (2013d), and Wu and Xia (2013) adopt a common normalization for identifica-
tion and estimation, which I assume hereafter, of fixed values for b0, diagonal blocks of
real Jordan matrices for κ̃ (which allows for repeated eigenvalues), θ̃ = 0, and a lower
diagonal matrix σ.9 As detailed in section 3.1, when one eigenvalue of κ̃ and/or κ is set
to zero, the further restriction a0 = 0 applies.

3 EMS measures from shadow/ZLB-GATSMs

In this section, I first show how the expected path of the SSR and its long-run expectation
(which I interpret as the neutral interest rate) under the risk-adjusted Q measure can be
used to create what I will call the EMS-Q measure. I use a specification where the non-
stationary restriction κ̃1 = 0 is imposed on the first eigenvalue because that results in
the most intuitive and parsimonious framework, as I subsequently illustrate in sections
3.2 and 3.3. In section 3.4, I show that the K-ANSM EMS-Q measures are empirically
more robust to different specifications and data sets than SSR estimates, and discuss why
EMS-Q measures should in principle be superior to alternative indicators of the monetary
policy stance. Section 3.5 compares EMS-Q measures in more detail.
EMS-Q measures can be similarly derived if stationary GATSMs (i.e. where all

eigenvalues κ̃i of κ̃ for the shadow GATSM are greater than zero) are used to repre-
sent the shadow term structure. However, the interpretation of stationary GATSMs is
more involved without adding anything to the principles of the EMS-Q measures for
non-stationary GATSMs, so I relegate those details and illustrations to appendix A.

3.1 EMS-Q measure with κ̃1 = 0

With the block-diagonal specification and κ̃1 = 0, x1 (t) becomes a Level state variable
that follows a random walk. Therefore, the parameter a0 is restricted to zero, because
it can no longer be identified in the estimation, and because it is redundant from an
economic perspective given that x1 (t) completely captures the long-run expectation of

8The Wu and Xia (2013) K-GATSM is estimated using forward one-month rates constructed from
the estimated Svensson (1995)/Nelson and Siegel (1987) model parameters reported in Gürkaynak, Sack,
and Wright (2007). Continuous-time K-GATSMs could be estimated analogously using instantaneous
forward rates constructed from the same data set. However, I prefer to use an interest rate measurement
equation with interest rate data because that is standard in the literature, and forward rate data are not
available or readily obtainable for interest rate data sets generated from non-parametric methods; e.g.
Bloomberg data (see Kushnir (2009) for method details) and Fama and Bliss (1987).

9Different normalizations could be chosen, such as a lower diagonal κ matrix and a diagonal σ matrix,
or θ = 0 with θ̃ estimated, but they would be observationally equivalent representations of the yield
curve data. Appendix B shows how non-block-diagonal specifications may be handled, effectively by
pre-diagonalizing the original specification.
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Ẽt [r (t+ τ)]. Specifically, the expected path of the SSR is:

Ẽt [r (t+ τ)] = b′0 exp (−κ̃τ)x (t)

=
[
b0,1, b

′
0,L

]
exp

(
−
[

0 0
0 κ̃L

]
τ

)[
x1 (t)
xL (t)

]
=

[
b0,1, b

′
0,L

] [ 1 0
0 exp (−κ̃Lτ)

] [
x1 (t)
xL (t)

]
= b0,1x1 (t) + b′0,L exp (−κ̃Lτ)xL (t) (19)

where b0,L is the (N − 1)× 1 lower-block vector of b0, κ̃L is the (N − 1)× (N − 1) lower-
block matrix of κ̃, and xL (t) is the (N − 1) × 1 lower-block vector of x (t). The SSR
is:

Ẽt [r (t+ τ)]
∣∣∣
τ=0

= b′0x (t) = r (t) (20)

and the long-run expectation/neutral rate is:

lim
τ→∞

Ẽt [r (t+ τ)] = b0,1x1 (t) (21)

A common example of this specification in GATSMs is the three-factor arbitrage-
free Nelson and Siegel (1987) model, or hereafter ANSM(3); e.g. see Krippner (2006),
Christensen, Diebold, and Rudebusch (2011), and Diebold and Rudebusch (2013). In
that case, the remaining two eigenvalues are restricted to be equal, i.e. κ̃2 = κ̃3 > 0.
However, the following expressions would also apply if κ̃2 and κ̃3 were allowed to be
distinct, or if just one non-Level factor were used, as with the ANSM(2) used to represent
the shadow term structure in section 3.2. Empirically, the restriction κ̃1 = 0 can generally
be imposed for parsimony because estimated GATSMs and shadow/ZLB-GATSMs with
κ̃i > 0 inevitably turn out to have one eigenvalue κ̃1 & 0.10

I define the EMS-Q measure at time t, denoted ξ̃ (t), as the integral of the expected
path of the shadow short rate truncated at zero relative to its long-run value, i.e.:

ξ̃ (t) =

∫ ∞
0

(
b0,1x1 (t)−max

{
0, Ẽt [r (t+ τ)]

})
dτ

=

∫ ∞
0

(
max

{
b0,1x1 (t) , b0,1x1 (t)− b0,1x1 (t)− b′0,L exp (−κ̃Lτ)xL (t)

})
dτ

=

∫ ∞
0

(
max

{
b0,1x1 (t) ,−b′0,L exp (−κ̃Lτ)xL (t)

})
dτ (22)

As I will subsequently explain in section 5.2, I intentionally use max
{

0, Ẽt [r (t+ τ)]
}

to define ξ̃ (t), rather than using the non-equivalent alternative Ẽt [max {0, r (t+ τ)}]. The
latter would result in infinite EMS-Qmeasures, which would not correlate empirically with
macroeconomic variables and would therefore not be a useful quantity in practice.

3.2 K-ANSM(2) EMS-Q measure

The EMS-Q measure in practice is most clearly illustrated for the two-factor K-ANSM,
or K-ANSM(2) hereafter. The parsimony of the ANSM(2) when representing the shadow

10See, for example, Kim and Singleton (2012) and Ichiue and Ueno (2013) for B-GATSMs, and Wu and
Xia (2013) for a K-GATSM example. Krippner (2013c) provides a wide range of results for GATSMs.
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term structure makes it very convenient mathematically, and the ANSM(2) is also real-
istic from a macro-finance perspective for the following four reasons: (1) it contains the
Level and Slope components of the term structure, which proxy the first two principal
components that in turn explain 99.9 percent of variation in the GSW10 and GSW30
data sets; (2) it approximates the generic GATSM (hence, any GATSM that could be
specified) to first order in the sense discussed in Krippner (2013c);11 (3) the Level and
Slope have been shown to relate respectively to inflation and output growth (see Krippner
(2008) for discussion of the principles and Diebold, Rudebusch, and Aruoba (2006) for
empirical evidence); and (4) related to the previous point, the Level component is mod-
elled as a unit root process. The latter corresponds with empirical evidence that inflation
is a strongly persistent process where a unit root typically cannot be rejected; e.g. see
Aïssa and Jouini (2003).
For the K-ANSM(2), Ẽt [r (t+ τ)] is defined with b′0 = [1, 1], and a mean-reversion

matrix κ̃ with zeros apart from φ in the lower diagonal element. Hence, equation 19
becomes:

Ẽt [r (t+ τ)] = x1 (t) + x2 (t) · exp (−φτ) (23)

with the SSR:
r (t) = x1 (t) + x2 (t) (24)

and the long-run expectation:

lim
τ→∞

Ẽt [r (t+ τ)] = x1 (t) (25)

Rather than immediately deriving a general analytic expression for ξ̃ (t) at this stage,
it is more insightful to illustrate the EMS-Q measure graphically, and so figures 3 and 4
provide examples of the two cases that can occur in practice.12 Note that, unless stated
otherwise, all figures in section 3 are based on the K-ANSM(2) and K-ANSM(3) models
from Krippner (2013d) which are estimated (with the iterated extended Kalman filter)
using month-end Gürkaynak, Sack, andWright (2007) yield curve data with maturities out
to 30 years (hereafter the GSW30 data set). Specifically, the maturities of the GSW30
data set are 0.25, 0.5, 1, 2, 3, 4, 5, 7, 10, 15, 20, and 30 years, the sample period is
November 1985 (the first month from which 30 year data were available) to July 2013
(the last month available at the time of the Krippner (2013d) estimations). I also use
results estimated with GSW10 data (i.e. the GSW30 data set without the last three
yields), but the GSW30 data should in principle provide better estimates of the Level
state variable and hence the EMS-Q measure, and section 3.4 shows that is indeed the
case in practice. Note also that the principles of the illustrations also apply to B-GATSMs,
but the estimates of the shadow-GATSM parameters and state variables from the data
would differ somewhat.
11Krippner (2013c) sets the near-zero eigenvalues of the mean-reversion matrix κ̃ for the generic GATSM

equal to zero and the non-persistent eigenvalues to their mean value denoted as φ. The components of
the generic GATSM then condense to the ANSM(2). The extension to the ANSM(3) allows an additional
term in the Taylor expansion for the non-persistent eigenvalues around φ, which results in the addition
of the Bow component relative to the ANSM(2).
12Other possibilities with x1 (t) < 0 are purely mathematical; such estimates do not arise in practice,

and a negative neutral interest rate would lack an economic interpretation in any case.
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Figure 3: U.S. yield curve data, estimated K-ANSM(2) results, and the EMS-Q measure for
July 2011. This example illustrates the case for a negative SSR, which in turn corresponds to

an unconventional/ZLB monetary policy environment.

Figure 3 illustrates ξ̃ (t) as the shaded region for an unconventional/ZLB environment.
This example is as at July 2011, and I use that date often throughout the article to
demonstrate alternative models. For figure 3, the estimated Level and Slope state variables
are x1 (t) = 5.70% and x2 (t) = −12.62%, giving an SSR of r(t) = −6.91%, which means

the truncation max
{

0, Ẽt [r (t+ τ)]
}
will bind for future horizons τ ∈ [0, τ 0]. The value

of τ 0 is obtained by setting Ẽt [r (t+ τ 0)] = x1 (t) + x2 (t) · exp (−φτ 0) = 0 and solving for
τ 0, with the result:

τ 0 = −1

φ
log

[
−x1 (t)

x2 (t)

]
(26)

which has a value of τ 0 = 2.32 years in figure 3, given the parameter estimate φ = 0.3196.
In general, ξ̃ (t) will have two components when r(t) < 0. Specifically, equation 22
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with b0,L = 1 and κ̃L = φ gives:

ξ̃ (t) =

∫ ∞
0

(max {x1 (t) ,−x2 (t) · exp (−κ̃τ)}) dτ

=

∫ τ0

0

x1 (t) dτ −
∫ ∞
τ0

x2 (t) · exp (−φτ) dτ

= x1 (t) · τ 0 − x2 (t) · 1

φ
exp (−φτ 0) (27)

Evaluating those integrals as at July 2011 and summing them gives ξ̃ (t) = 31.47 percent.13

Figure 4: U.S. yield curve data, estimated K-ANSM(2) results, and the EMS-Q measure for
July 2008. This example illustrates the case for a positive SSR, which in turn corresponds to a

conventional/non-ZLB monetary policy environment.

Figure 4 illustrates the economic stimulus ξ̃ (t) for July 2008, which is an example of
a conventional/non-ZLB environment. In this case the estimated Level and Slope state
variables are x1 (t) = 5.41% and x2 (t) = −4.54%, giving an SSR of 0.87%, and so the

truncation max
{

0, Ẽt [r (t+ τ)]
}
will not bind for any future horizons.

13Interest rates are expressed as an annualized percent per year. Hence, the integral has the units of
percent per year multiplied by years, which produces the unit of percent.
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In general, ξ̃ (t) will have just a single component when r(t) ≥ 0, i.e.:

ξ̃ (t) = −
∫ ∞
0

x2 (t) · exp (−φτ) dτ (28)

= −x2 (t) · 1

φ
(29)

The result of that integral as at July 2008 is ξ̃ (t) = 13.79. Note that ξ̃ (t) can and
has taken on negative values (e.g. see figures 6 and 7 subsequently), which occurs if
x2 (t) > 0. That condition has an economic interpretation of a restrictive stance of
monetary policy; specifically, x2 (t) > 0 corresponds to r(t) > limτ→∞ Et [r (t+ τ)], hence
r
¯
(t)− limτ→∞ Et [r (t+ τ)] > 0, which in turn implies that the current actual interest rates
are restrictive relative to their neutral interest rate.
Summarizing the two cases, the general analytic expression ξ̃ (t) with the ANSM(2) is

therefore:

ξ̃ (t) =


x1 (t) · τ 0 − x2 (t) · 1

φ
exp (−φτ 0) if r (t) < 0

−x2 (t) · 1
φ

if r (t) ≥ 0
(30)

3.3 K-ANSM(3) EMS measure

For the K-ANSM(3), Ẽt [r (t+ τ)] is defined with b′0 = [1, 1, 0] and a mean-reversion matrix
κ̃ with zeros apart from the following lower diagonal Jordan block:

κ̃L =

[
φ −φ
0 φ

]
(31)

Hence, equation 19 becomes:

Ẽt [r (t+ τ)] = x1 (t) + x2 (t) · exp (−φτ) + x3 (t) · φτ exp (−φτ) (32)

which is the ANSM(2) expression with the addition of a Bow component, i.e. x3 (t) ·
φτ exp (−φτ),14 that improves the fit of mid-maturity rates. The expressions for the
long-run expectation and the SSR are the same as for the K-ANSM(2).
In principle, the general analytic expression for ξ̃ (t) from the ANSM(3) would involve

the two cases for the ANSM(2) and an additional potential case where Ẽt [r (t+ τ)] < 0
for intermediate values of τ (i.e. 0 < τ 1 < τ < τ 2). However, the latter case has never
occurred in practice, and so the ξ̃ (t) general analytic expression for the ANSM(3) is
analogous to the ANSM(2) with the addition of the Bow component, i.e.:

ξ̃ (t) =


x1 (t) · τ 0 − x2 (t) · 1

φ
exp (−φτ 0)

−x3 (t) ·
[(

1
φ

+ τ 0

)
exp (−φτ 0)

] if r (t) < 0

−S (t) · 1
φ
−B (t) · 1

φ
if r (t) ≥ 0

(33)

14See Diebold and Rudebusch (2013) for further discussion on Nelson and Siegel (1987) models and
ANSMs. My preferred name “Bow” is often referred to as “Curvature” in that book and the related
literature. However, the Slope component itself has a natural curvature, resulting from its exponential
decay functional form, so Bow is a less ambiguous (and syllable-saving) name for the third ANSM
component.
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where τ 0 is readily found numerically (e.g. using the “fzero”function in MatLab) as the
solution to Ẽt [r (t+ τ 0)] = x1 (t) +x2 (t) · exp (−φτ 0) +x3 (t) ·φτ exp (−φτ) = 0. In figure
5, τ 0 = 2.38 years, which compares to τ 0 = 2.32 years for the ANSM(2).
Figure 5 illustrates ξ̃ (t) for the ANSM(3) as at July 2011. In this case the estimated

Level, Slope, and Bow state variables of x1 (t) = 6.11%, x2 (t) = −8.82%, and x3 (t) =
−8.46% give ξ̃ (t) = 33.87, which is close to the value of ξ̃ (t) = 31.47 for the K-ANSM(2)
in figure 3. However, the SSR of r(t) = −2.71% is distinctly different from the value of
−6.91% for the ANSM(2) in figure 3, which in turn arises from the influence of the Bow
component in fitting the observed yield curve data.

Figure 5: U.S. yield curve data, estimated K-ANSM(3) results, and the EMS-Q measure for
July 2011. This example illustrates an alternative estimate for the unconventional/ZLB

monetary policy environment illustrated in figure 3. The resulting EMS measure is similar to
figure 3, while the SSR is distinctly different.

3.4 Comparing K-ANSM EMS measures to SSRs

3.4.1 Empirical perspective

Figure 6 plots the time series of the EMS-Q measures and the SSRs for the K-ANSM(2)
and K-ANSM(3) results obtained with the GSW30 data set, and figure 7 plots the results
obtained with the GSW10 data set. Note that I have indicated NBER recessions with
the shaded areas, as I will do for all full-sample time series figures, to provide a very
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preliminary gauge on how the series relate to real output growth. Section 5.1 discusses
the more systematic analysis that would obviously be required to fully assess the practical
use of EMS-Q measures.
One key point from the time series figures is that, within and across both figures,

the EMS-Q measures are much closer to each other than the SSR estimates. This result
suggests that the EMS-Q measures are more robust than SSRs with respect to the number
of factors used to specify the model and the data used for estimation. That said, there
is still some variation between the EMS-Q measures, particularly a notable divergence at
the end of the sample, which warrants further discussion in section 3.5.

Figure 6: Time series plots of the EMS-Q measures and the SSRs for the K-ANSM(2) and
K-ANSM(3) estimated with GSW30 data. The EMS-Q measures are more robust across the

estimated models than the SSR estimates.

Another key point from figures 6 and 7 is that EMS-Q measures appear to correlate
well with output growth. Specifically, the periods where the EMS-Q measures are high
follow the onset of NBER recessions, and the larger recession associated with the Global
Financial Crisis is followed with a more extreme and prolonged EMS-Q measure than the
previous two recessions. The higher EMS-Q measures are in turn consistent with easier
monetary policy to close the output gaps that arise in the wake of the recessions. In
that regard, the SSR estimates have a complementary profile, but with wider variation
between different model estimates as previously mentioned.
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Figure 7: Time series plots of the EMS-Q measures and the SSRs for the K-ANSM(2) and
K-ANSM(3) estimated with GSW10 data. The EMS-Q measures are more robust across the

estimated models than the SSR estimates.

15



3.4.2 Theoretical perspective

To highlight the economic interpretation of the EMS-Q measures, note that they change
continuously with the changing shape of the yield curve, which in turn implies: (1) a
change to the expected path of the SSR; and/or (2) a change to the long-run SSR expec-
tation, which is used as a proxy for the neutral interest rate (and both are coincident with
the long-run expectation of the actual short rate). I discuss each of the two components
in turn.
In non-ZLB periods, the expected path of the SSR can change independently of changes

to the policy rate, which is appropriate because even conventional monetary policy op-
erates partly through signalling and expectations; e.g. see Walsh (2003) chapter 10 for
discussion of the principles and Gürkaynak, Sack, and Swanson (2005) for empirical evi-
dence. In ZLB periods, forward guidance and expectations are an important component
of unconventional monetary policy; e.g. see Woodford (2012) section 1. Note, however,
that Ẽt [r (t+ τ)] can and does change beyond the direct influence of either conventional
or unconventional monetary policy actions, essentially by any factors that influence the
yield curve. Therefore, Ẽt [r (t+ τ)] and EMS-Q measures should be treated as market
expectations variables subject to central bank influence, rather than quantities explicitly
controlled by the central bank like the FFR or asset purchase programs. In that respect,
Ẽt [r (t+ τ)] is similar to the lift-off horizon, which can be influenced but not explicitly
controlled by the central bank.
Regarding the long-run SSR expectation/neutral interest rate, it can change to reflect

changes in expected macroeconomic fundamentals (such as long-run inflation expectations
and potential output growth) in both non-ZLB and ZLB environments; Krippner (2008)
contains related discussion. Potential output growth is generally considered to be beyond
the influence of the central bank, while the policy goals (such as an inflation target) and
the credibility of the central bank may influence long-run inflation expectations.
Because EMS-Q measures account for the path of the expected actual short rate

relative to its long-run expectation, they should provide a more comprehensive summary
of the stimulus from interest rates and the yield curve compared to any single actual or
estimated interest rate, or interest rate spreads. This observation applies even in non-
ZLB/conventional monetary policy environments, where identical settings of the FFR
with different expectations of future movements imply different degrees of monetary policy
stimulus. For example, the FFR was cut to 1.00% on 25 June 2003 where it remained
until a hike to 1.25% on 10 August 2004. However, yield curve data at the beginning of
that period was distinctly lower than at the end. Figures 6 and 7 indicate that difference
with higher EMS-Q measures, and figure 8 indicate it with lower SSR estimates (which
are distinctly lower than the plotted 3 month rate, and the FFR at the time).
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Figure 8: Actual interest rates and their spread (short- less long-maturity rate), and the
K-ANSM(2) SSR. At the ZLB, the 3 month rate is uninformative, the spread is directionally

misleading, and the SSR overstates the degree of monetary policy stimulus.

More generally, if the FFR or short-maturity rate is not compared to a neutral rate,
then it could be misleading as a metric for monetary policy. At the very least, the
FFR should be adjusted for inflation, based on proxies for inflation expectations (such
as historic inflation and/or surveys). Conversely, EMS-Q measures directly deliver a
quantity adjusted for inflation expectations inherent in the Level component of the K-
ANSM (or B-GATSM), which in turn reflects interest rates for longer maturities. In non-
ZLB/conventional monetary policy environments, using the spread between the interest
rates of two maturities on the yield curve could be used to mitigate the issues associated
with using a single interest rate as a metric for monetary policy stimulus. However, EMS-
Qmeasures remain superior, in principle, to any spread because EMS-Qmeasures account
for the different paths of the actual short rate that might underlie any particular spread.
In ZLB/unconventional monetary policy environments, EMS-Q measures have very

distinct advantages relative to actual interest rates, spreads between actual interest rates,
and SSRs. The advantage over actual interest rates is that EMS-Q measures can con-
tinue to reflect unconventional policy easing, while the ZLB attenuates further downward
interest rates movements; in particular, short-maturity interest rates essentially remain
static at or near zero and so cannot reflect further policy easing. The advantage over
actual interest rate spreads is even more pronounced. Specifically, figure 8 plots the 3-
month less 10-year spread, which is a standard indicator of the yield curve slope (albeit
inverted here to correspond with the profile of the 3-month rate and the SSR). Note
that periods of tight (easy) policy in non-ZLB/conventional monetary policy environ-
ments have inevitably corresponded with high (low) values of the spread. However, in
the ZLB/unconventional monetary policy environment since December 2008, the spread
steadily rises (apart from tapering talk at the end of the sample) because the 10-year rate
falls while the 3-month rate remains at approximately zero. Therefore, the rising spread
could be misinterpreted as a tightening of monetary policy, when in reality it was eased
substantially via unconventional methods. The EMS-Q measures to move in the direction
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of easing, and so are consistent with unconventional monetary policy events.
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Figure 9: The change in the K-ANSM(2) EMS-Q measure for 25 bp decreases in the SSR as a
function of the starting values of the SSR on the x axis. The monetary policy stimulus from
decreasing the SSR (i.e. moving from right to left on the x axix) is attenuated by the ZLB as

the SSR moves through the ZLB to more negative values.

While movements in the SSR are also qualitatively consistent with actual monetary
policy events, a literal interpretation of the SSR profile is that a fall by a given amount
offers a similar amount of policy stimulus regardless of the SSR level. Specifically, that
is how the SSR would effectively be treated in any econometric analysis. However, as
initially discussed in the introduction and illustrated in figure 2, it is actual interest rates
constrained by the ZLB rather than SSRs that are faced by economic agents. Hence, a
decline in the SSR when it is positive is associated with similar-sized falls in short-maturity
interest rates and corresponding falls in interest rates along the yield curve. Conversely,
when the SSR is zero or negative, the interest rates for short maturities cannot fall as the
SSR declines to more negative values, and falls in interest rates along the yield curve are
also attenuated. This attenuation becomes more pronounced as the SSR becomes more
negative, essentially because forward rates for increasingly long horizons will already be
subject to the ZLB constraint.
Figure 9 illustrates the attenuation effect by plotting the increase in the K-ANSM(2)

EMS-Q measure for a 25 basis point (bp) decrease in the SSR, as a function of the starting
values of the SSR (e.g. what is the EMS-Q measure change when the SSR is lowered from
10 to 9.75%, 9.75 to 9.50% etc.). Note that the Level variable x1 (t) remains constant at
5% throughout (hence the long-run SSR expectation/neutral interest rate is 5%) and the
SSR is varied by changing the Slope state variable x2 (t). The increases in the EMS-Q
measure are essentially identical for each 25 bp cut in the SSR from 10 to 0% (i.e. moving
from right to left on the x axis). However, from 0 to -10%, the increases in the EMS-Q
measure for each successive 25 bp cut in the SSR become lower. This pattern shows how
the notional monetary policy stimulus from lower SSRs gets increasingly attenuated as the
SSR moves through the ZLB to more negative values. In other words, the monetary policy
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stimulus from the SSR becomes non-linear at and below SSR values of zero. The EMS-Q
measure explicitly accounts for that non-linearity, and so should in principle provide a
better measure of monetary policy stimulus.

3.5 Comparing K-ANSM EMS-Q measures
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Figure 10: EMS-Q measures for the K-ANSMs based on GSW10 and GSW30 data. The
K-ANSM(3) GSW30 EMS-Q measure is “best”, as discussed in the text, while the other

measures show some divergence from August 2011.

While the EMS-Q measures are apparently more robust than SSRs, the variation
between them is suffi cient to ask the question: which EMS-Q measure is “best”? Based
on the results and associated discussion below, the K-ANSM(3) GSW30 EMS-Q measure
appears to be better than the other EMS-Q measures, but all measures can likely be
improved on as I later discuss in section 5.1. Figure 10 replots all of the EMS measures
from figures 7 and 8 over the latter part of sample so the main divergences noted in the
previous section are easier to see.

19



Figure 11: 10 and 30 year maturity interest rates, and the Level state variables for the
K-ANSM(2) and K-ANSM(3) estimated using the GSW10 and GSW30 data sets. The more
pronounced declines in the 10 year rates lead to lower GSW10 Level estimates at the end of

the sample.

The most notable divergences occur from August 2011 when the ANSM(3) GSW30
EMS-Q measure remains relatively steady while the other EMS-Q measures move to less
positive values. The latter movements are consistent with a policy tightening and/or
market anticipation of more restrictive interest rates relative to the neutral rate, but that
does not accord with the Federal Reserve’s policy guidance at the time. Indeed, August
2011 was the month in which the Federal Reserve’s first introduced explicit conditional
forward guidance into its post-meeting press release, and that was generally regarded as
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an easing event by the market. Specifically, the 10 year rate fell by 68 bps from July to
August 2011, and later declined by a further 86 bps to a low of 1.55 percent in July 2012.

Figure 12: U.S. yield curve data, estimated K-ANSM(2) results based on GSW10 data, and
the EMS measure for July 2012. This illustrates how a low estimate of the Level state variable

attenuates the EMS measure.

The anomalous movement in all but the ANSM(3) GSW30 EMS measure can be
explained by the influence of the Level state variable on the EMS-Q measure, which is in
turn largely due to the dependence of the Level estimate on the data used for estimation.
Essentially, the EMS-Q measure is attenuated to the extent that cyclical variation in
longer-maturity yield curve data gets translated into the Level estimate. To illustrate
that mechanism, figure 11 plots the GSW 10 and 30 year maturity interest rates along
with the K-ANSM Level state variable estimates based on the GSW10 and GSW30 data
sets. The 10 year interest rate data has greater cyclical variation than the 30 year interest
rate data, most notably showing a more pronounced decline since 2011. That greater
cyclical variation translates into a greater cyclical variation of the Level estimate from
the GSW10 data compared to the Level estimates from the GSW30 data; in particular,
the decline in the GSW10 Level estimates are more pronounced since 2011.
In turn, as illustrated in figure 12, the lower GSW10 Level estimates are treated as a

lower long-run SSR expectation/neutral interest rate, which severely attenuates the area
between Ẽt [r (t+ τ)] and x1 (t), and leads to a low EMS-Q measure. Conversely, GSW30
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Level estimates show less cyclical variation, which translates into less attenuation and
therefore variation in the associated EMS-Q measures.15
In essence then, the longer-maturity data in the GSW30 data set appears to provide

a better empirical anchor for long-run SSR expectations that are used as a proxy for
the neutral interest rate. In turn, that is consistent with the principle that interest rate
data spanning longer horizons should be less influenced by prevailing monetary policy
and economic cycles, and more influenced by the long-run macroeconomic fundamentals
of potential growth and inflation expectations mentioned in section 3.4.
Regarding the two EMS-Q measures based on GSW30 data, the K-ANSM(3) EMS-Q

measure should in principle be better than the K-ANSM(2) EMS-Q measure. The K-
ANSM(3) has the additional flexibility of the Bow component to better explain cyclical
movements in short- and medium-maturity rates, leaving the Level less influenced by
cyclical changes in those rates. Conversely, the K-ANSM(2) is forced to accommodate
some of the cyclical movements in medium-maturity rates within the Level estimate,
and that will lead to more attenuation in the associated EMS-Q measure relative to the
K-ANSM(3).

4 EMS-P measures
EMS-P measures for shadow/ZLB-GATSMs may be defined analogous to EMS-Q mea-
sures. Specifying both κ̃ and κ to be block diagonal with their first eigenvalues restricted
to zero, as with the supplementary two-factor K-GATSM I present in this section, again
results in most intuitive and parsimonious framework. Appendix B illustrates how both
of those aspects could be relaxed.
In the example that follows, I have specified and estimated (with GSW30 data and

the iterated extended Kalman filter) a two-factor K-GATSM with κ =diag[0, κ2] and
κ̃ =diag[0, κ̃2]. This specification fulfills the intended restrictions κ1 = 0 and κ̃1 = 0
while also resulting in straightforward functional forms for illustrative purposes. That is,
with a0 = 0 and b′0 = [1, 1], equation 5 becomes:

Et [r (t+ τ)] = θ1 + θ2 + x1 (t)− θ1 + [x2 (t)− θ2] · exp (−κ2τ)

= θ2 + x1 (t) + [x2 (t)− θ2] · exp (−κ2τ) (34)

with the SSR:
r (t) = x1 (t) + x2 (t) (35)

the long-run expectation:

lim
τ→∞

Et [r (t+ τ)] = θ2 + x1 (t) (36)

The EMS-Q measure is as already defined in section 3.1, and the EMS-P measure is:

ξ (t) =


∫ τ0
0
θ2 + x1 (t) dτ −

∫∞
τ0

[x2 (t)− θ2] · exp (−κ2τ) dτ if r (t) < 0

−
∫∞
τ0

[x2 (t)− θ2] · exp (−κ2τ) dτ if r (t) ≥ 0
(37)

=


[θ2 + x1 (t)] · τ 0 − [x2 (t)− θ2] · 1κ2 exp (−κ2τ 0) if r (t) < 0

− [x2 (t)− θ2] · 1κ2 if r (t) ≥ 0
(38)

15The value of τ0 = 6.95 years based on the GSW10 data in figure 8 is also relatively large compared
to the value of τ0 = 3.96 years based on the GSW30 data.
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Figure 13 plots an example of the EMS-Q and EMS-P measures for July 2011. Figure
14 plots the time series of EMS-Q and EMS-P measures, and also the associated SSR.

Figure 13: Results for the estimated supplementary K-ANSM(2) under the risk-adjusted Q
measure and the physical P measure, and the EMS-Q and EMS-P measures for July 2011.

When the restrictions κ1 = 0 and κ̃1 = 0 are imposed on a shadow/ZLB-GATSM,
the difference between the EMS-Q and EMS-P measures reflects the effect of the risk
premium function. That difference can vary over time, and using that difference may
provide a useful quantity in its own right as I discuss in section 5.1. However, note that
the specification of κ =diag[0, κ2] and κ̃ =diag[0, κ̃2] in my illustrative ANSM(2) example
implicitly imposes Γ11 = 0, i.e.:

κ̃ = κ+ Γ[
0 0
0 κ̃22

]
=

[
0 0
0 κ22

]
+

[
0 0
0 Γ22

]
(39)

Therefore the market prices of risk are not allowed to vary with the Level state variable
x1 (t), which may be an oversimplified model for practical use.
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Figure 14: Time series plots of the EMS-Q and EMS-P measures and the SSR for the
restricted K-ANSM(2) discussed in the text. The restrictions noted in the text result in time

series that could be compared to macroeconomic variables.

5 Discussion and future work

In this section, I first summarize the key conclusions from sections 3 and 4 as a precursor
to discussing future work that will likely be required to refine and assess EMS measures.
I then briefly discuss some alternative EMS measures that could be defined, although
none seem to offer the intuition and parsimony of the K-ANSM EMS measures already
presented in sections 3 and 4.

5.1 EMS measures already proposed

The key results in section 4 are as follows: (1) the K-GATSM EMS-Q measures associated
with κ̃1 = 0 have stable mathematical properties, an intuitive economic interpretation,
and are arguably better measures of the stance of monetary policy in principle than actual
short rates, SSRs, single interest rates of other maturities, or interest rate spreads;16 (2)
empirically, the κ̃1 = 0 EMS-Q measures appear to be more robust than SSRs to different
model specifications and choices of data for estimation, although some effects of the

16These in-principle points apply equally to B-GATSM EMS measures.
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practical choices underlying EMS-Q measures are still evident; and (3) EMS-P measures
with κ1 = 0 have analogous properties to κ̃1 = 0 EMS-Q measures.
Each of the points mentioned above is subject to further consideration and analysis.

For example, one conceptual question that arises from point 3 is which of the κ̃1 = 0
EMS-Q or κ1 = 0 EMS-P measures is preferable in principle. The EMS-Q measure is
based on a risk-adjusted measure, and so naturally relates to asset prices. However, the
EMS-P measure is based on a physical measure, and so relates to actual quantities faced
by economic agents like expected output growth and inflation. Both measures are likely
to be useful in different contexts. The implied risk premium measure obtained as the
difference between the EMS-Q and EMS-P measures may also be useful in its own right,
particularly because the effect of unconventional monetary policy is considered to arise
from a combination of expected policy rates and risk premiums; e.g. see Woodford (2012)
for an overview.
Regarding points 1 and 2, a detailed empirical assessment of EMS measures relative to

traditional metrics for monetary policy would be required to determine if EMS measures
are potentially useful in the first instance, and then which EMS measure is most useful
in practice. One perspective of these assessments would be testing the correlation of
EMS measures with the known evolution of monetary policy actions and guidance, over
both ZLB and non-ZLB periods. The ultimate test, which cuts to the essence of operating
monetary policy with respect to macroeconomic policy targets and/or objectives, would be
to assess the inter-relationships of EMS measures with macroeconomic data like inflation,
output growth, and exchange rates. The two figures below, from preliminary related work
by the author, suggest that the EMS measures perform usefully in practice as monetary
policy metrics over both conventional and unconventional monetary policy environments.

Figure 14b: The U.S. K-ANSM(3) EMS correlates well with the output gap, which is
consistent with more stimulatory policy when output is below potential, and more restrictive

policy when output is above potential.
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Figure 14c: The U.K. EMS relative to the euro-area EMS correlates well with the U.K. versus
the euro currency, which is consistent with relatively more stimulatory policy coinciding with a

weaker exchange rate, and relatively more restrictive policy coinciding with a stronger
exchange rate.

Also regarding point 2, the sensitivity of EMS measures to the estimated Level state
variable raises a potential avenue for improving the EMS measures. Mechanically, if the
scope for the cyclical variation of the Level estimate were limited, then the EMS measures
would reflect more of the cyclical variation in the yield curve data. Such limits could be
obtained using appropriate restrictions and/or using information external to the model
and data. For example, survey information on expected market interest rates under the
P-measure could be used to improve the estimation of the model, as discussed in Kim
and Orphanides (2012). In addition, data related to the macroeconomic quantities that
should underlie long-run/neutral interest rates may be exploitable. In particular, surveys
of long-term inflation expectations could be incorporated into the P-measure specification
of a shadow/ZLB-ANSM.
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5.2 Alternative EMS measures

The EMS-Q measure could be converted into a relative asset price basis as follows:

ξ̃A1 (t) =
exp

(
−
∫∞
0
Ẽt [r (t+ τ)] du

)
exp

(
−
∫∞
0

limτ→∞ Ẽt [r (t+ τ)] du
)

= exp

(
−
∫ ∞
0

Ẽt [r (t+ τ)]− lim
τ→∞

Ẽt [r (t+ τ)] du
)

= exp
[
−ξ̃ (t)

]
(40)

Figure 15 plots the alternative EMS-Q measure ξ̃A1 (t) for the K-ANSMs already
discussed earlier. Note that the lower values now indicate more stimulus, but otherwise
ξ̃A1 (t) captures the same information and has the same underlying foundation as ξ̃ (t).
As noted in section 3.1, I intentionally define the EMS-Q measure ξ̃ (t) using the

expression max
{

0, Ẽt [r (t+ τ)]
}
rather than using Ẽt [max {0, r (t+ τ)}] which is non-

equivalent. An EMS-Q measure ξ̃A2 (t) defined as:

ξ̃A2 (t) =

∫ ∞
0

Ẽt [x1 (t+ τ)−max {0, x1 (t+ τ)− r (t+ τ)}] (41)

would be unbounded for the case where κ̃1 = 0 and very model sensitive in the case
κ̃1 & 0. Appendix C.1 contains further details and discussion on these issues, and the
principles would apply analogously for the EMS-P measure ξA2 (t).
An alternative EMS measure ξ̃A3 (t) based on discounting assumed cashflows would at

least be mathematically defined in both the κ̃1 = 0 and κ̃1 & 0 cases. However, the interest
rates used for the discounting would themselves not have any economic interpretation.
Appendix C.2 contains further details and discussion on such a measure.
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Figure 15: Time series plots of the EMS-Q measures from figures 4 and 5, but on an asset
price basis. The transformation means that lower values imply greater monetary stimulus.

6 Conclusion

In this article, I have introduced the idea of EMS measures based on shadow/ZLB-
GATSMs with the restrictions κ̃1 = 0 and κ1 = 0 to summarize of the stance of monetary
policy. EMS measures aggregate the entire expected path of SSRs truncated at zero rel-
ative to their long-run expectation from the model (a proxy for a neutral rate), and are
consistent and comparable across conventional/non-ZLB and unconventional/ZLB envi-
ronments. In principle, EMS measures should be a superior indicator than any particular
actual or estimated interest rate, and in practice the EMS measures calculated for two
and three factor shadow/ZLB-GATSMs with the restrictions κ̃1 = 0 and κ1 = 0 are
shown to be more robust than the SSR estimates. Further assessment and potential im-
provements of EMS measures remains to be undertaken, particularly investigating the
inter-relationships of the EMS measure with macroeconomic data.
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A EMS measures for stationary shadow-GATSMs

In this appendix, I discuss EMS measures for stationary shadow/ZLB-GATSMs, and
illustrate the principles using the two-factor stationary K-GATSM, or K-GATSM(2), re-
sults from Krippner (2013d). In appendix A.1, I show that using a fixed value for the
long-run expectation/neutral interest rate leads to EMS measures that lack what I will
call “economic meaning”. For the purposes of this appendix, a quantity without “eco-
nomic meaning”should broadly be interpreted as something that doesn’t correlate with
macroeconomic quantities such as output growth (or related series, like the output gap or
recession indicators).17 However, based on the discussion in Kim and Orphanides (2012)

17A more formal definition is beyond the scope of the present article. For that purpose, I am currently
developing a macro-finance framework based on a multi-factor version of the Cox, Ingersoll, and Ross
(1985a) economy, which is used to justify GATSMs, Cox, Ingersoll, and Ross (1985b)/square-root models,
and Gaussian/square-root mixture models.
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p .245,18 if one effectively treats the persistent component of a stationary GATSM as an
approximation to the Level component of non-stationary GATSM, then EMS measures
can be obtained analogous to the K-ANSMs in sections 3 and 4. I illustrate this in ap-
pendix A.2. Note that the exposition and examples I use are for the Q measure, but the
same results hold analogously for the P measure. Also, the K-GATSM(2) from Krippner
(2013d) has a block-diagonal mean-reversion matrix, but I show in appendix B how EMS
measures for non-stationary or stationary non-block-diagonal may be calculated.

A.1 Constant long-run SSR expectations

If all eigenvalues of κ̃ (and κ) for the shadow-GATSM are greater than zero, then the
expected path of the SSR under the risk-adjusted Q measure is:

Ẽt [r (t+ τ)] = a0 + b′0 exp (−κ̃τ)x (t) (42)

and the infinite expectation of equation 42 is:

lim
τ→∞

Ẽt [r (t+ τ)] = a0 (43)

For the K-GATSM(2), using a0 as the long-run SSR expectation/neutral interest rate
gives an EMS-Q measure of:

ξ̃ (t) =


∫ τ0
0
a0 dτ −

∫∞
τ0
x1 (t) · exp (−κ̃1τ) + x2 (t) · exp (−κ̃2τ) dτ if r (t) < 0

−
∫∞
0
x1 (t) · exp (−κ̃1τ) + x2 (t) · exp (−κ̃2τ) dτ if r (t) ≥ 0

(44)

Figure 16 illustrates the EMS-Q measure ξ̃ (t) as at July 2011 for the K-GATSM(2)
estimated with GSW10 and GSW30 data. In both cases, the low rates of mean reversion
(i.e. κ̃1 = 0.0348 and κ̃1 = 0.0283 for the GSW10 and GSW30 data respectively) lead to
those components relative to the estimate of a0 dominating the EMSmeasure. Specifically,
the persistent overshoot of Ẽt [r (t+ τ)] relative to a0 in the GSW10 case leads to a large
negative EMS-Qmeasure of ξ̃ (t) = −70.27, while the persistent undershoot in the GSW30
case leads to a very large positive EMS measure of ξ̃ (t) = 462.43. Those large and
persistent deviations of Et [r (t+ τ)] relative to a0 over practical horizons are an initial
indication that the K-GATSM(2) EMS measures lack economic meaning.19

18To quote: “Although this contrasts with models that require the infinite-horizon expectation of the
short-term interest rate to vary over time, we note that, as a practical matter, the stationary model we
consider is suffi ciently flexible that it can accommodate considerable time variation in “long-horizon”
forecasts (say 5 to 10 years), and it may be hard to distinguish from nonstationary models even over such
long horizons.”
19The K-ANSM(2) example in section 3.2 has a P measure K-GATSM(2) with κ1 = 3.952e-06, which

leads to a very persistent process for Et [r (t+ τ)] and therefore extremely large values of ξ (t).
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Figure 16: K-GATSM(2) EMS-Q measures for July 2011 based on a constant long-run SSR
expectation, and estimated with GSW10 and GSW30 data. The persistent K-GATSM(2)
components associated with κ̃1& 0 relative to the constant dominates the EMS-Q measures,

leading them to lack economic meaning.

A lack of economic meaning is also suggested in figure 17, which illustrates the time se-
ries of EMS-Qmeasures based on K-GATSM(2) estimates using GSW10 and GSW30 data.
The EMS-Qmeasures are standardized as z scores (i.e.

{
ξ̃ (t)−mean

[
ξ̃ (t)

]}
/stdev

[
ξ̃ (t)

]
)

so they can be plotted on the same scale. Both series show an upward trend over time
which, if taken literally, would imply a steady easing of actual and/or anticipated mone-
tary conditions over the sample period, and which is inconsistent with the NBER recession
indicators. Of course, that upward trend actually reflects the general downward trend in
the yield curve data relative to the estimated constant a0, which is used as the long-run
expectation of Et [r (t+ τ)]. The time trend in the EMS measures will occur irrespective
of the estimate of a0 (e.g. one could argue that a0 = 15.71% for the GSW30 data seems
high); the only requirement is that a0 is constant, which is the case for K-GATSMs.
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Figure 17: Time series plots of K-GATMS(2) SSRs and EMS-Q measures based on a constant
long-run expectation, and estimated with GSW10 and GSW30 data. The time trend in the

EMS-Q measures suggest that they lack economic meaning.

In general, as previously mentioned in section 3.1, shadow-GATSMs and GATSMs
inevitably turn out to have κ̃1 & 0. Therefore, the issues already illustrated above
for the K-GATSM(2) with a constant long-run SSR expectation will hold generally for
shadow/ZLB-GATSMs when calculating EMS-Q measures. One potential resolution to
the lack of economic meaning would be to allow a time-varying estimate of a0, perhaps
by incorporating a regime switching model. That option would be more appealing from
an economic perspective, but it would create a less parsimonious model from a practical
perspective. In any case, figure 11 in section 3.5 indicates that any time variation in a0
would have to replicate a highly persistent process, so simply imposing the restriction
κ̃1 = 0 with a K-ANSM would present a more pragmatic solution.

A.2 Time-varying long-run SSR expectations

If a low mean-reversion process to x1 (t) is used to approximate a time-varying long-run
SSR expectation/neutral interest rate, then limτ→∞ Ẽt [r (t+ τ)] becomes:

lim
τ→∞

Ẽt [r (t+ τ)] = a0 + x1 (t) exp (−κ1τ) (45)
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and the EMS-Q measure therefore becomes the analogue of equation 22, i.e.:20

ξ̃ (t) =

∫ ∞
0

(
a0 + x1 (t) exp (−κ1τ)−max

{
0, Ẽt [r (t+ τ)]

})
dτ

=

∫ ∞
0

max
{
a0 + x1 (t) exp (−κ1τ) , b′0,L exp (−κ̃Lτ)xL (t)

}
dτ (46)

Figure 18: K-GATSM(2) EMS-Q measures for July 2011 based on approximate time-varying
long-run expectations, and estimated with GSW10 and GSW30 data. The very large values

from figure 13 are now absent.

Equation 46 is well-defined mathematically for any horizon, as figure 18 illustrates as at
July 2011 for the K-GATSM(2) estimated with GSW10 and GSW30 data. Nevertheless,
there are two apparent downsides relative to the K-ANSM(2). First, a0+x1 (t) exp (−κ1τ)
can really only be viewed as a long-run SSR expectation/neutral interest rate for relatively
short horizons, over which the expression will remain approximately constant. In figure
18, x1 (t) exp (−κ1τ) has some attenuation even out to 10 years, and it becomes much more
noticeable out to 30 years. Second, the EMS-Q measures are not as robust in outright
terms between the estimations with different data. Therefore, in figure 19, I have again

20Equations 42, 43, and 46 will still apply if κ̃ contains repeated eigenvalues, e.g. κ̃2 = κ̃3 for the
three-factor shadow-GATSM in Wu and Xia (2013). In that case, the corresponding components of
Ẽt [r (t+ τ)] take the form detailed in section 3.3.
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standardized as z scores the time series of EMS-Q measures estimated with GSW10 and
GSW30 data. The two series, albeit standardized, track each other very closely. More
importantly, EMS-Q measures also line up with the economic recessions, as discussed in
section 3.4, indicating that they are correlated with output growth and/or output gap
data.

Figure 19: Time series plots of K-GATMS(2) SSRs and EMS-Q measures based on
approximate time-varying long-run expectations, and estimated with GSW10 and GSW30

data. The time trend evident in figure 14 is now absent.

In summary, stationary K-GATSMs (or B-GATSMs) could be used to obtain EMS
measures with economic meaning. However, EMS measures based on models with an im-
posed eigenvalue of zero appear to offer a more pragmatic solution; in practice they pro-
duce EMS measures that are robust between different models and data, and the concept
of the time-varying long-run SSR expectation/neutral interest rate from the framework
also holds over any horizon.

B EMS measures from non-block-diagonal specifica-
tions

I have used block-diagonal specifications of the mean-reversion matrices in this article to
simplify the notation and resulting expressions. However, EMS measures can be calcu-
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lated analogously with non-block-diagonal specifications. I illustrate this for P measures,
because estimation restrictions for GATSMs and shadow-GATSMs are typically applied
under the Q measure, as mentioned at the end of section 2.2, leaving more flexibility un-
der the P measure. However, the results would apply analogously for non-block-diagonal
specifications of mean-reversion matrices under the Q measure.
For any K-GATSM (or B-GATSM), the expected path of the state variables under the

physical P measure is:

Et [x (t+ τ)] = θ + exp (−κτ) [x (t)− θ]
= θ + exp

(
−V DV −1τ

)
[x (t)− θ]

= θ + V exp (−Dτ)V −1 [x (t)− θ] (47)

where V DV −1 = κ is a Jordan decomposition (which allows for repeated eigenvalues),
with an N × N matrix V containing the eigenvectors in columns and an N × N matrix
D containing the blocks of Jordan matrices. Note that the eigensystem decomposition
could potentially result in pairs of complex conjugates (if no additional restrictions are
applied), and that the real parts of the eigenvalues, i.e. real(κi) > 0, need to be positive
to ensure a mean-reverting process. In practice, as with all of the examples in the present
article, κ1 inevitably has a single real entry, and so I assume that in what follows. Hence,
I denote D as:

D =

[
κ1 0
0 κL

]
(48)

where κ1 is a scalar, and κL is the (N − 1)× (N − 1) lower block of D. Hence:

exp (−Dτ) =

[
exp (−κ1τ) 0

0 exp (−κLτ)

]
(49)

Equation 47 may be re-expressed with a block diagonal mean-version matrix by pre-
multiplying equation 47 by V −1, i.e.:

V −1Et [x (t+ τ)] = V −1θ + exp (−κτ)V −1 [x (t)− θ]
Et [x∗ (t+ τ)] = θ∗ + exp (−κτ) [x∗ (t)− θ∗] (50)

where Et [x∗ (t+ τ)] = V −1Et [x (t+ τ)], x∗ (t) = V −1x (t), and θ∗ = V −1θ. Therefore the
expected path of the state variables is equivalently represented by the process:[

Et [x∗1 (t+ τ)]
Et [x∗L (t+ τ)]

]
=

[
θ∗1
θ∗L

]
+

[
exp (−κ1τ) 0

0 exp (−κLτ)

]([
x∗1 (t)
x∗L (t)

]
−
[
θ∗1
θ∗L

])
(51)

where the top line contains the expectations process for x∗1 (t), and the bottom line con-
tains the expectations process for the remaining elements of x∗ (t), which I denote as the
(N − 1)× 1 vector x∗L (t).
If κ1 = 0, then exp (−κ1τ) in equation 49 becomes 1, and the GATSM is non-stationary

with a random walk process for x∗1 (t), i.e.:

Et [x∗1 (t+ τ)] = θ∗1 + [x∗1 (t)− θ∗1] = x∗1 (t) (52)

Otherwise, if κ1 & 0, Et [x∗1 (t+ τ)], the GATSM is stationary with a persistent mean-
reverting process for x∗1 (t), i.e.:

Et [x∗1 (t+ τ)] = θ∗1 + exp (−κ1τ) [x∗1 (t)− θ∗1] (53)
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The vector x∗L (t) follows a mean-reverting process, i.e.:

Et [x∗L (t+ τ)] = θ∗L + exp (−κLτ) [x∗L (t)− θ∗L] (54)

Note that these expectations could also be computed directly using matrix exponentials,
which is a standard function available in MatLab. However, using a Jordan decompo-
sition is faster because it allows for vectorized evaluations of all expectation horizons
simultaneously using scalar exponentials.
The expected path of the shadow short rate Et [r (t+ τ)] may be expressed in terms

of Et [x∗ (t+ τ)] as follows:

Et [r (t+ τ)] = a0 + b′0Et [x (t+ τ)]

= a0 + b′0V V
−1Et [x (t+ τ)]

= a0 + b∗′0 Et [x∗ (t+ τ)]

= a0 + b∗0,1Et [x∗1 (t+ τ)] + b∗′0,LEt [x∗L (t+ τ)]

= a0 + b∗0,1Et [x∗1 (t+ τ)]

+b∗′0,L {θ∗L + exp (−κLτ) [x∗L (t)− θ∗L]} (55)

where I have left Et [x∗1 (t+ τ)] generic to allow for either non-stationary or stationary
specifications, and b∗′0 = b′0V . b

∗
0 is an N × 1 vector composed of the first element b∗0,1 and

the (N − 1)× 1 lower-block vector b∗0,L. Note that if κ1 > 0 and κ̃1 = 0, which is the case
for K-ANSMs with the restriction real(κi) > 0 that is often applied in practice,21 then
the restriction a0 = 0 applies. The restriction a0 = 0 will also apply if κ1 = 0.
With κ1 = 0, the long-run expectation of equation 55 is:

lim
τ→∞

Et [r (t+ τ)] = b∗0,1 lim
τ→∞

Et [x∗1 (t+ τ)] + b∗′0,L lim
τ→∞

Et [x∗L (t+ τ)]

= b∗′0,1x
∗
1 (t) + b∗′0,Lθ

∗
L (56)

and therefore the EMS-P measure is:

ξ (t) =

∫ ∞
0

(
b∗0,1x

∗
1 (t) + b∗′0,Lθ

∗
L −max {0,Et [r (t+ τ)]}

)
dτ

=

∫ ∞
0

max
{
b∗0,1x

∗
1 (t) + b∗′0,Lθ

∗
L,−b∗′0,L exp (−κLτ) [x∗L (t)− θ∗L]

}
dτ (57)

If κ1 & 0, the GATSM is stationary and the approximate long-run expectation of 55
is:

lim
τ→∞

Et [r (t+ τ)] = a0 + b∗0,1Et [x∗1 (t+ τ)] + b∗′0,LEt [x∗L (t+ τ)]

r∞ = a0 + θ∗L + exp (−κLτ) [x∗L (t)− θ∗L] + b∗′0,Lθ
∗
L (58)

where r∞ is introduced for notational convenience. The EMS-P measure is therefore:

ξ (t) =

∫ ∞
0

(r∞ −max {0,Et [r (t+ τ)]}) dτ

=

∫ ∞
0

max
{
r∞,−b∗′0,L exp (−κLτ) [x∗L (t)− θ∗L]

}
dτ (59)

In summary, EMS measures from K-GATSMs specified with non-block-diagonal mean-
reversion matrices are analogous to those with block-diagonal specifications, but matrix
exponentials or Jordan decompositions are required for the calculation process.
21See, e.g Christensen, Diebold, and Rudebusch (2011) footnote 15 or Krippner (2013d).
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C Alternative EMS measures

This appendix provides further discussion on the alternative EMS measures mentioned at
the end of section 5.2. I have used the Q measure for the discussions, but the comments
would apply analogously under the P measure.

C.1 Alternative 2

The expression Ẽt [max {0, r (t+ τ)}] does not have a long-run expectation when κ̃1 = 0,
because x1 (t+ τ) has a normal distribution with a mean x1 (t) and a standard deviation
that grows as σ1

√
τ . Therefore:

lim
τ→∞

Ẽt [max {0, r (t+ τ)}] = lim
τ→∞

Ẽt [max {0, x1 (t+ τ)}] (60)

would be an unbounded positive quantity. The same issue arises for an alternative EMS
measure ξ̃A2 (t) based directly on Ẽt [x1 (t)−max {0, r (t+ τ)}]. For example, using the
ANSM(2) to illustrate, one would obtain the following expression:

ξ̃A2 (t) =

∫ ∞
0

Ẽt [x1 (t+ τ)−max {0, x1 (t+ τ)− r (t+ τ)}] (61)

=

∫ ∞
0

Ẽt [max {x1 (t+ τ) ,−x2 (t+ τ)}] (62)

ξ̃A2 (t) will be an unbounded positive quantity because x1 (t+ τ) is unbounded on
the positive domain, and that property translates into max {x1 (t+ τ) ,−x2 (t+ τ)}. At
the same time, max {x1 (t+ τ) ,−x2 (t+ τ)} will be bounded below by −x2 (t+ τ), which
converges to a finite distribution because x2 (t+ τ) follows a mean-reverting process. In
addition, x1 (t+ τ) can adopt negative values, which would be questionable from an eco-
nomic perspective.
If all κ̃i > 0, then an EMS measure based on Ẽt [max {0, r (t+ τ)}] would be math-

ematically defined. However, the state variable x1 (t+ τ) associated with the eigenvalue
κ̃1 & 0 would have the following mean and standard deviation:

mean [x1 (t+ τ)] = exp (−κ̃1τ) · x1 (t) (63)

stdev [x1 (t+ τ)] = σ1

√
1

2κ̃1
[1− exp (−2κ̃1τ)] (64)

The value of stdev[x1 (t+ τ)] would therefore still be large relative to mean[x1 (t+ τ)]
for longer horizons, resulting in the distribution on the positive domain dominating the
calculation of ξ̃A2 (t). In other words, ξ̃A2 (t) would take on large values, sensitive to
the precise magnitude of small estimates of κ̃1. Therefore, EMS-Q measures based on
Ẽt [max {0, r (t+ τ)}] with either κ̃1 = 0 or κ̃1 & 0 would lack an economic interpretation.

C.2 Alternative 3

A potential alternative to the EMS measure proposed in appendix B.1 that would work
mathematically in an cases would be to define a measure ξ̃A3 (t) as the analogue of an asset
price by discounting an assumed stream of cashflows with the ZLB term structure. For
example, assuming a unit cashflow in continuous time would give the following expression:
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ξ̃A3 (t) =

∫ ∞
0

exp [−R
¯

(t, u)u] du (65)

where R
¯

(t, u) is given in equation 14. Because R
¯

(t, u) > 0, ξ̃A3 (t) is a bounded quantity
even if R

¯
(t, u) is unbounded (which is the case for B-GATSMs with κ̃1 = 0; K-GATSMs

interest rates revert to zero for very long horizons). However, such an EMS measure
would need to justify any particular assumed stream of cashflows, and there would be no
concept of a neutral interest rate underlying it.
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