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Abstract

In this article, the exact conditional second, third and fourth moments of returns

and their temporal aggregates are derived under Quadratic GARCH models. Three

multiple period Value at Risk estimation methods are proposed. Two methods are

based on the exact second to fourth moments and the other adopts a Monte Carlo

approach. Some simulations show that the multiple period Value at Risk calculated

from an asymmetric t-distribution with the variance, skewness parameter and the

degrees of freedom chosen to match the second to fourth moments of the aggregate

returns is close to the one obtained by Monte Carlo simulations. Using some market

indices for illustration, the proposed Value at Risk estimation methods are found

to be superior to some standard approaches such as RiskMetrics.
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1 Introduction

This article studies the conditional moments of temporal aggregate returns under some

GARCH specifications. Let rt be the return at time t and Ωt be the information up to

time t. The aggregate return Rt,h at time t for a horizon h is given by

Rt,h = rt+1 + · · ·+ rt+h.

Denote the conditional variance of rt given Ωt−1 by σ2t . It is well-known that if the

variances are constant, that is, σ2t = σ2 and the returns rt are uncorrelated, the variance

of the aggregate returns Rt,h is simply hσ
2. In other words, under the random walk

hypothesis, the standard deviation or volatility of Rt,h is obtained by scaling σ with
√
h.

This simple scaling method is called the square root of time rule, or
√
h rule. For example,

if σ is the constant standard deviation of daily returns, the annual standard deviation is

usually referred to
√
252σ, under the assumption that we have approximately 252 trading

days per year. Although this square root of time rule is widely accepted by practitioners to

do annualization and to measure the risk in different horizons, its restrictions and problems

are well known. For example, J.P. Morgan (1996, page 87) stated that ‘Typically, the

square root of time rule results from the assumption that variances are constant ’. Also,

Diebold, Hickman, Inoue and Schuermann (1998) stated that ‘The common practice of

converting 1-day volatility estimates to h-day estimates by scaling by
√
h is inappropriate

and produces overestimates of the variability of long-horizon volatility ’. In light of the

restrictions and problems of the
√
h rule pointed out in the literature, it is important to

further examine the rule in various scenarios.

In this article, we focus our study on the GARCH framework. The appropriateness of

the rule depends on the conditional second moment properties of the aggregate returns.

Recently, many studies have investigated the moment properties of GARCH processes.

See for example He and Teräsvirta (1999a, 1999b) and Duan, Gauthier and Simonato

(1999). While existing results on GARCH moments involve mainly the unconditional

moments, chapters 3 and 7 of Tsay (2002) studied the multiple period volatility forecasts

under GARCH models. To examine the
√
h rule and to study the tail properties of

the aggregate returns, we derive the exact conditional variance, skewness and kurtosis of

Rt,h given Ωt for some GARCH processes. Through this variance, we provide theoretical

justification for the adaptation of the square root of time rule in some cases such as

the RiskMetrics model of J. P. Morgan. More importantly, the variance, skewness and

kurtosis enable us to construct two new methods for estimating multiple period Value at

Risk (VaR).

VaR is a common measure of risk. It is the loss of a portfolio that will be exceeded

with a predetermined probability over a time period. In general, if C is the current market

value of a portfolio and h is the holding period, the h-period VaR of that portfolio is given
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by

VaR = −C × Vh, (1)

where Vh is the cutoff value which is exceeded by h-period returns with probability 1− p.
Therefore, estimating the VaR amounts to computing a percentile of the h-period port-

folio return distribution. Several approaches, including the historical simulation method,

variance-covariance method and Monte Carlo simulation method, have been developed.

Danielsson and de Vires (1997) discussed a newly-developed method which is based on

the extreme value theory. Ho, Burridge, Cadle and Theobald (2000) applied the extreme

value theory to some Asian market indices. Lucas (2000) considered the misspecification

of tail properties in the return distribution and its effect on the VaR estimation. For

comprehensive reviews of the VaR, one can refer to Duffie and Pan (1997), Jorion (1997),

Dowd (1998) and Tsay (2002).

Most of the existing researches focus on the one-period VaR estimation, that is, the

time horizon is one unit. For the calculation of the VaR in long horizons, we need to know

the distribution of Rt,h given Ωt, which is generally not feasible. A traditional method

which applies the
√
h rule treats Rt,h as a normal variable with mean zero and variance

calculated by scaling σ2t+1 with h. RiskMetrics adopted this
√
h method in the multiple

period VaR estimation. Beltratti and Morana (1999) applied this method with GARCH

models to daily and half-hourly data. Rather than following the square root of time rule,

we make use of the tail behavior of the aggregate return distribution. We developed

two new VaR estimation methods based on the exact conditional variance, skewness and

kurtosis and a Monte Carlo method. Simulation and empirical results demonstrate that

our proposed methods outperform the
√
h method in many cases.

The rest of the article is organized as follows. Section 2 gives the derivation of the exact

conditional variance. Section 3 derives the exact conditional third and fourth moments

of the aggregate returns in some GARCH processes. Section 4 discusses problems of the

multiple period VaR estimation. Three new methods for estimating long horizon VaR are

also introduced in this section. One approach uses the exact conditional variance derived

in section 2 while regarding Rt,h as normal variables. Another approach also uses the ex-

act conditional variance but assumes Rt,h has a skewed t-distribution with the skewness

and kurtosis matching that of Rt,h. The last approach uses some Monte Carlo simula-

tion methods. Section 5 studies the distribution of the aggregate returns Rt,h in various

scenarios. Section 6 presents results for comparing our proposed multiple period VaR

estimation methods with the commonly used
√
h method. Section 7 contains empirical

applications using daily returns of seven market indices. Section 8 is the conclusion.

3



2 Exact conditional variance of aggregates

In the general heteroskedastic models considered in Engle (1982) and Bollerslev (1986),

the conditional variance of rt is independent of the sign of rt. However, as it is commonly

observed in the literature that the variance of returns responses asymmetrically to the rise

and drop in the stock markets, we adopt in this paper the Quadratic GARCHmodel (Engle

1990, Sentana 1991, Campbell and Hentschel 1992). Specifically, the return generating

process follows the QGARCH(p,q) model:

rt = µ+ r̄t, r̄t = σt6t, 6t ∼ D(0, 1), (2)

σ2t = α0 +
q3
i=1

αi(r̄t−i − bi)2 +
p3
j=1

βjσ
2
t−j , (3)

where D(0,1) denotes a distribution with mean 0 and variance 1. As usual, the random

errors 6t are uncorrelated. In the model, µ is the unconditional mean, r̄t = rt − µ is the
‘centered return’ having zero mean and bi’s are the asymmetric variance parameters whose

values equal to zero gives the traditional GARCH(p, q) model. An interesting particular

case is the IGARCH(1,1) model as adopted in RiskMetrics, where µ = α0 = b1 = 0,

α1 = 1− λ, β1 = λ and D(0,1) is the standard normal distribution. Writing equation (3)

as

σ2t = αI0 +
q3
i=1

αir̄
2
t−i +

p3
j=1

βjσ
2
t−j − 2

q3
s=1

αsbsr̄t−s, αI0 = α0 +
q3
s=1

αsb
2
s,

we have the following results:

Proposition 1 var(Rt,h | Ωt) =
h3
k=1

E[r̄2t+k | Ωt].

Proposition 2 Let γt,s be the conditional expectation E[r̄
2
t | Ωs]. Define m = max{p, q}

and φi = αi + βi, i = 1,..., m where αi = 0 for i > q and βi = 0 for i > p. Then, for

k ≥ m+ 1,
γt+k,t = αI0 +

m3
i=1

φiγt+k−i,t.

A proof of the propositions is given in Appendix A.1 and A.2. Similar forecasting results

under GARCH are also discussed in sections 3.4 and 7.3 of Tsay (2002). Using Proposi-

tions 1 and 2, we can get the aggregate conditional variance var(Rt,h | Ωt) recursively. In
particular, if p = q = 1,

var(Rt,h | Ωt) =


α0
1−φ1 [h−

1−φh1
1−φ1 ] +

1−φh1
1−φ1σ

2
t+1 if φ1 < 1

(h−1)h
2

αI0 + hσ
2
t+1 if φ1 = 1

. (4)
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For the RiskMetrics model that has φ1 = 1 and α
I
0 = 0, the volatility of Rt,h is given by

the volatility at time t + 1, that is σt+1, multiplied by
√
h. Therefore, the square root

of time rule adopted by many practitioners is obeyed in the RiskMetrics set-up. This is

also mentioned in section 7.2 of Tsay (2002). In the stationary case of φ1 < 1, φ
h
1 → 0 as

h→∞ and so

var(Rt,h | Ωt) ≈ αI0
1− φ1

h− αI0
(1− φ1)2

+
σ2t+1
1− φ1

, (5)

when h is large. The long horizon forecast variance is roughly equal to h times αI0/(1−φ1)
which is independent of t and thus contradicting the

√
h rule that var(Rt,h | Ωt) is equal

to h multiples of σ2t+1. Needless to say, in the unconditional context, the
√
h rule holds

in the stationary case because var(Rt,h) is identical to h var(rt+1).

The above conclusions are in accord with the argument in Diebold et al. (1998) that in

stationary GARCH(1,1) models, applying the
√
h rule produces wrong fluctuation in the

long horizon volatility forecasts. Using the results in Drost and Nijman (1993), Diebold

et al. (1998) demonstrated that the aggregation diminishes the volatility fluctuation

as h increases. For instance, if {rt} is GARCH(1,1) with µ = b1 = 0, the aggregates

Rth,h = rth+1+ · · ·+rth+h will follow an implied GARCH(1,1) process with the conditional
variance σ

(h)2
t = var(Rth,h | Ω(h)t ) given by

σ
(h)2
t = α

(h)
0 + α

(h)
1 R

2
(t−1)h,h + β

(h)
1 σ

(h)2
t−1 , (6)

where Ω
(h)
t is the set of aggregate returns R0,h, · · · , R(t−1)h,h. As h approaches to ∞,

α
(h)
0 tends to hα0/(1 − φ1) and both α

(h)
1 and β

(h)
1 tend to zero (see Drost and Nijman

1993). Therefore, the volatility fluctuation disappears and the conditional variance σ
(h)2
t

converges to hα0/(1− φ1) eventually. This finding is consistent with what we have in (5)
that var(Rth,h | Ωth) converges to h times the unconditional variance of rt as h tends to
∞. Although we have the coherent limit result for the variance of Rth,h from the implied
h-period volatility model in (6) and the associated 1-period model, the variance forecast

of Rth,h given in (4), that is var(Rth,h | Ωth), is different from var(Rth,h | Ω(h)t ). The
former incorporates information of all 1-period returns up to time th whereas the latter

uses the h-period returns R0,h, ..., R(t−1)h,h.
A general advice put forward in Diebold et al. (1998) is that a h-period volatility

model should be used if we are interested in the h-period volatilities. For example, if

we have 2500 daily observations and we want monthly volatility forecasts or a holding

period of h = 20 days, we can only use 125 monthly observations instead of the 2500 daily

observations to construct a monthly return model. As far as the parameter accuracy

is concerned, this substantial reduction in the number of observations is certainly not

desirable. As Ωth contains more information than Ω
(h)
t , if var(Rth,h | Ωth) can be worked

out numerically or analytically, which is feasible for the QGARCH processes in (2) and (3),

it is more natural and appropriate to use var(Rth,h | Ωth) rather than var(Rth,h | Ω(h)t ) to
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forecast the variance of Rth,h. Hence, we suggest fitting models of 1-period returns rather

than models of aggregate returns for multiple period volatility forecasting.

3 Exact conditional third and fourth moments of

aggregates

Common conditional heteroskedastic models such as GARCH models are defined by the

predictive distribution of rt+1 conditional on Ωt. Although the conditional distribution

f(rt+1 | Ωt) is fixed in the model formulation, f(rt+h | Ωt) or even f(Rt,h | Ωt) are usually
very complicated and unknown if h > 1. As the construction of the h-period VaR is based

on the percentiles of f(Rt,h | Ωt), some properties of f(Rt,h | Ωt) is likely to be helpful
in improving the VaR estimation. In this section, we focus on the conditional third and

fourth moments of Rt,h under the QGARCH(p, q) model in (2) and (3) with symmetric

6t. Denote the kurtosis of 6t by K. In other words, K = E [64t ] > E [6
2
t ]
2
= 1. Define the

aggregate centered return as

R̄t,h = r̄t+1 + · · ·+ r̄t+h,

which relates to the aggregate return by Rt,h = hµ + R̄t,h. Under the symmetry of 6t, we

have

E
�
R̄3t,h | Ωt

=
= 3

h3
i=2

Lt,i, h ≥ 2, (7)

and the conditional fourth moment At,h = E
�
R̄4t,h | Ωt

=
given by

At,h = Kσ
4
t+1 + 6

h3
j=2

Et,j +
h3
j=2

Pt+j,t+j, h ≥ 2, (8)

where Lt,h = E
�
R̄t,h−1r̄2t+h | Ωt

=
, Et,h = E

�
R̄2t,h−1r̄

2
t+h | Ωt

=
and Pt+l,t+k = E

�
r̄2t+lr̄

2
t+k | Ωt

=
can be computed via some recursions. A proof of (7) and (8) and detailed procedures in

calculating At,h are given in Appendix A.3 and A.4. If there is no variance asymmetry,

that is, bi = 0, the third moment E
�
R̄3t,h | Ωt

=
will vanish and so the skewness of Rt,h

is zero. Therefore, the conditional skewness of the aggregate returns is induced by the

presence of variance asymmetry effect. Furthermore,

E
�
R3t,h | Ωt

=
= h3µ3 + 3hµE

�
R̄2t,h | Ωt

=
+ E

�
R̄3t,h | Ωt

=
and

E
�
R4t,h | Ωt

=
= h4µ4 + 6h2µ2E

�
R̄2t,h | Ωt

=
+ 4hµE

�
R̄3t,h | Ωt

=
+ E

�
R̄4t,h | Ωt

=
,

for h ≥ 1. The availability of E
�
R3t,h | Ωt

=
and E

�
R4t,h | Ωt

=
helps us understand the

tail behavior of f(Rt,h | Ωt) which is very important in working out the percentiles of
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Rt,h accurately given the information up to time t. Coupling with the exact conditional

variance var(Rt,h | Ωt), we introduce in the next section a new multiple-period VaR

estimation method which is likely to outperform other methods that do not make use of

the tail properties of f(Rt,h | Ωt).
An important special case of (3) that is very relevant to financial market practitioners

is provided by the RiskMetrics model:

rt = σt6t, σ2t = (1− λ) r2t−1 + λ σ2t−1. (9)

In this case, p = q = 1, µ = α0 = b1 = 0, α1 = 1 − λ and β1 = λ. Following (8),

the conditional kurtosis of the 1-period return rt+h and the aggregate return Rt,h given

Ωt, denoted by Krt+h|Ωt and KRt,h|Ωt respectively, can be written down in close forms as
follows:

Krt+h|Ωt = KGh−1, (10)

KRt,h|Ωt =
K

h

^
1 +

X
Gh − 1
h(G− 1) − 1

~w
6H

G− 1 + 1
W�
, (11)

where G = (K − 1)(1 − λ)2 + 1 and H = 1 − λ + λ
K
. The derivations of (10) and (11)

are presented in Appendix A.5. It is interesting to see that both Krt+h|Ωt and KRt,h|Ωt
are independent of t. Since G is greater than one (as K > 1), the conditional kurtosis of

rt+h increases exponentially with h while the conditional kurtosis of Rt,h approaches to

infinity as h tends to infinity. This long-horizon behavior of KRt,h|Ωt indicates that the
distribution of Rt,h becomes more and more heavy tailed when the forecast horizon or

the holding period h get longer and longer. Therefore, we will not be surprised if a small

percentile of Rt,h is poorly estimated under the normality assumption of f(Rt,h | Ωt),
especially when h is large.

4 Multiple period VaR estimation

Value at Risk is a measure of the maximum loss of a portfolio over a predetermined

horizon. More precisely, it is the loss that will be exceeded with probability p over a time

horizon of h periods. According to this definition, the Value at Risk can be formulated

as in (1), where C is the current market value of the portfolio and Vh is the h-period

return pth percentile. Obviously, an VaR estimate depends very much on the parameters

p and h. The choices of p and h can be subjective. For example, Jorion (1997, page 20)

stated that p can range from 1% to 5% according to the individual preference of different

commercial banks. Moreover, the time horizon or the holding period vary quite a lot

in different applications (see Christoffersen, Diebold and Schuermann 1998 and Jorion

1997). In 1996, the Bank for International Settlements (BIS) put forward the Amendment

7



to the Capital Accord to Incorporate Market Risks. According to the guidelines of the

Amendment, the VaR associated with p = 1% and h = 10 days should be calculated for

the determination of the market risk capital. In practice, the selection of h differing from

one leads to much complication in the estimation of VaR. In the actual calculation of

VaR, we usually assume a time series model for 1-period returns, such as the one given

in (2) and (3). The time unit for a single period depends on the frequency of the related

financial data available. For example, for equity indices data, daily or even hourly returns

can be collected and so the time unit can be set at 1 day. To implement the BIS regulation

based on a model of daily return data, we set h = 10.

Suppose that a model for 1-period returns is formulated as in (2) and (3). Using the

notations set out in section 2, given the information up to time t, we can determine Vh as

Vh = F
−1
t,h (p),

where Ft,h(·) is the probability distribution of the h-period return Rt,h given Ωt, i.e.
Ft,h(x) = Pr(Rt,h ≤ x | Ωt). If we want to obtain the VaR in (1), one has to solve the
inverse function of Ft,h(·) evaluated at p. In particular, if h = 1, Vh can be determined

easily as σt+1D
−1(p), whereD−1(·) is the inverse of the error distributionD(0, 1). However

in general, Ft,h(·) is analytically intractable especially when h is large. Even though for
h > 1, the conditional distribution of Rt,h given Ωt can be written down as

Ft,h(x) =
8
Rt,h≤x

f(Rt,h | Ωt+h−1)
h−1�
i=1

f(rt+i | Ωt+i−1) d(rt+1, · · · , rt+h),

the evaluation of Vh has to involve high-dimension integration. Therefore, the exact value

of Vh is usually unavailable when h is greater than one. A commonly used estimator for

Vh is given by

V̂
[1]
h = hµ+

√
hσt+1Φ

−1(p),

where Φ(·) is the standard normal distribution function. RiskMetrics adopts V̂ [1]h with

µ = 0 for the h-period VaR estimation. The rationale behind is based on a normality

assumption and the square root of time rule. In the model assumed by RiskMetrics,

D(0, 1) is the standard normal and so V̂
[1]
1 = σt+1Φ

−1(p) gives the exact value of V1.
Borrowing the idea of the

√
h rule, V̂

[1]
h is constructed by scaling V̂

[1]
1 with

√
h. Actually,

this kind of scaling method has been widely accepted by practitioners. For example,

the BIS suggested using the
√
h rule to convert a 1-day VaR estimate to a 10-day VaR

estimate for calculating the capital requirement. If the distribution Ft,h(·) is normal and
var(Rt,h | Ωt) = hσ2t+1, V̂ [1]h is equivalent to Vh. According to (4), var(Rt,h | Ωt) = hσ2t+1
holds in the QGARCH(1,1) model with µ = b1 = α0 = 0 and α1 + β1 = 1. Therefore,

using V̂
[1]
h under the RiskMetrics model setting can provide a good estimate of Vh if Ft,h(·)

is reasonably close to normal. To investigate whether V̂
[1]
h is an appropriate estimator for
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Vh, we examine the discrepancy between Ft,h(·) and a normal distribution having the same
variance in the next section.

Since in most cases, such as modeling the return rt with a stationary QGARCH(1,1)

model, neither var(Rt,h | Ωt) = hσ2t+1 nor Ft,h(·) is normal, using V̂ [1]h to provide a good

estimate of Vh is questionable. In this paper, we propose a natural alternative to V̂
[1]
h as

V̂
[2]
h = hµ+

�
var(Rt,h | Ωt) Φ−1(p).

This estimator is constructed by treating Ft,h(·) as normal with the actual variance
var(Rt,h | Ωt). An advantage of V̂ [2]h over V̂

[1]
h is that using the exact variance of Ft,h(·) in

V̂
[2]
h bypasses the potential bias of V̂

[1]
h due to ‘mis-scaling’. For example, under a station-

ary QGARCH(1,1) model, using V̂
[1]
h for the long horizon VaR estimation can be prob-

lematic because when h is large, var(Rt,h | Ωt) ≈ hαI0/(1−φ1) which can be very different
from hσ2t+1. Therefore, the new estimator V̂

[2]
h , which eliminates the mis-scaling error is

expected to be superior to V̂
[1]
h in many cases. Obviously, when var(Rt,h | Ωt) = hσ2t+1,

V̂
[2]
h = V̂

[1]
h .

Although V̂
[2]
h can overcome the mis-scaling problem in using V̂

[1]
h , the error in the

VaR estimation due to the departure of Ft,h(·) from normal can be very significant. We

propose another estimator for Vh which is more general than V̂
[2]
h by incorporating also the

skewness and tail properties of Ft,h(·). A new estimator is constructed using the skewed
t-distribution introduced in Theodossiou (1998). Its probability density function is

f(x) =


C
}
1 + 2

ν−2
p

x+a
θ(1−τ)

Q2]− (ν+1)2

if x < −a,

C
}
1 + 2

ν−2
p

x+a
θ(1+τ)

Q2]− (ν+1)2

if x ≥ −a,
(12)

where τ and ν are parameters of the distribution,

C =
B(3

2
, ν−2

2
)
1
2S(τ )

B(1
2
, ν
2
)
3
2

, θ =

√
2

S(τ)
,

a =
2τB(1, ν−1

2
)

S(τ)B(1
2
, ν
2
)
1
2B(3

2
, ν−2

2
)
1
2

, S(τ) =

^
1 + 3τ2 − 4τ 2B(1, ν−1

2
)2

B(1
2
, ν
2
)B(3

2
, ν−2

2
)

� 1
2

and B(·) is the beta function. The above distribution has mean 0, variance 1,

E[x3] =
4τ (1 + τ3)B(2, ν−3

2
)B(1

2
, ν
2
)
1
2

B(3
2
, ν−2
2
)
3
2S(τ)3

− 3a− a3 and

E[x4] =
3(ν − 2)(1 + 10τ2 + 5τ 4)

(ν − 4)S(τ)4 − 4aE[x3]− 6a2 − a4.
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If τ = 0, the skewed t becomes the ordinary symmetric t-distribution.

By encompassing the third and fourth moments structure of the aggregate returns,

the following new estimator is introduced:

V̂
[3]
h = hµ+

�
var(Rt,h | Ωt) f−1(p), (13)

where f−1(p) is the pth percentile of (12). We choose τ and ν by matching the skewness
and kurtosis of the skewed t-distribution and that of the aggregate returns. In other

words, the two parameters are found by solving the two equations:

E
�
R̄3t,h | Ωt

=
var(Rt,h | Ωt) 32

= E[x3], (14)

E
�
R̄4t,h | Ωt

=
var(Rt,h | Ωt)2 = E[x4]. (15)

In particular, when the volatility responses symmetrically to bad and good news, that is,

bi = 0, we have E
�
R̄3t,h | Ωt

=
= 0 and thus solving (14) and (15) gives τ = 0 and

ν =
6− 4KRt,h|Ωt
3−KRt,h|Ωt

or 4 +
6

KRt,h|Ωt − 3
, (16)

where

KRt,h|Ωt =
E
�
R̄4t,h | Ωt

=
var(Rt,h | Ωt)2 .

Then, the estimator in (13) is simplified to V̂
[3]
h = hµ+

�
var(Rt,h | Ωt) t−1ν (p), where tν(·)

is the standardized t-distribution with variance 1 and degrees of freedom ν. Under the

RiskMetrics model specification in (9), ν in (16) depends on λ, K and h only because

according to (11), KRt,h|Ωt is time-independent under the RiskMetrics model. If 6t is
standard normally distributed (K = 3), we have the following values of KRt,h|Ωt , ν and
t−1ν (p) for p = 1% and 5%, h = 5, 10 and 50 and λ = 0.94 and 0.97.

h KRt,h|Ωt ν t−1ν (0.01) dν(0.01) t−1ν (0.05) dν(0.05)

λ = 0.94

5 3.31613 22.98 -2.389 -0.063 -1.638 0.007

10 3.39271 19.28 -2.401 -0.075 -1.636 0.009

50 3.77838 11.71 -2.450 -0.124 -1.626 0.019

λ = 0.97

5 3.15075 43.80 -2.359 -0.033 -1.642 0.003

10 3.17822 37.67 -2.364 -0.038 -1.641 0.004

50 3.27081 26.16 -2.381 -0.055 -1.639 0.006
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Knowing that the standard normal one and five percentiles are -2.326 and -1.645 respec-

tively, we also present dν(p) = t
−1
ν (p)−Φ−1(p) in various scenarios. We observe from the

table that t−1ν (0.01) decreases with h whereas t
−1
ν (0.05) increases with h. The magnitude

of dν(p) grows with h for both p = 1% and 5%, implying that there is greater discrepancy

between the standard normal and the t-distribution used to match KRt,h|Ωt . Although all
dν(0.05) reported above are positive, their magnitude is so small that V̂

[2]
h and V̂

[3]
h are

likely to be very close in the real data implementation. Therefore, it is not surprising to

see satisfactory performance in using the RiskMetrics method for p = 5% even though the

fat-tailed characteristics of f(Rt,h | Ωt) have not been accounted for. On the other hand,
all dν(0.01) are large and negative, implying that V̂

[2]
h is substantially greater than V̂

[3]
h for

p = 1%. Hence, by just replacing -2.326 with t−1ν (0.01), our third estimator offers a simple
and useful way in reducing the usual upward bias encountered in using the RiskMetrics

method to estimate the 1% Vh.

The last estimator we propose is based on some Monte Carlo samples of Rt,h from

Ft,h(·). This method avoids making any assumptions on the distribution of Ft,h(·). If the
number of Monte Carlo samples obtained is large enough, this method is likely to produce

a good estimate of Vh. Because of the decomposition

f(rt+1, · · · , rt+h | Ωt) =
h�
i=1

f(rt+i | Ωt+i−1),

iid samples from the above joint density can be simulated by the method of composition

(Tanner 1993, p.30-33). Given Ωt, σ
2
t+1 is known. For i = 1, ..., N where N is the number

of replications, we

1. simulate r
(i)
t+1 ∼ µ+ σt+1D(0, 1) and set j = 2,

2. calculate σ(i)t+j from (3) using r(i)t+j−1,..., r
(i)
t+1 and Ωt,

3. simulate r
(i)
t+j ∼ µ+ σ

(i)
t+jD(0, 1),

4. repeat steps 2 and 3 for j = 3, ..., h.

Then (r(i)t+1, ..., r
(i)
t+h) is a draw from the joint density f(rt+1, · · · , rt+h | Ωt) and

R
(i)
t,h = r

(i)
t+1 + · · ·+ r(i)t+h, i = 1, ..., N

forms an independent sample from f(Rt,h | Ωt). Finally, we propose a Monte Carlo

estimator for Vh given by

V̂
[4]
h = sample p percentile of Rt,h.

It was shown in Serfling (1980, p.74-75) that V̂ [4]h , constructed by the iid sample R
(i)
t,h, i =

1, ..., N , converges to Vh with probability one. So this fourth estimator converges to Vh as

N increases. When N is sufficiently large, the empirical distribution of the Monte Carlo

sample can well approximate the target distribution Ft,h(·) that the sample percentile V̂ [4]h

can give us a good estimate of the desired VaR.
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5 Distribution of the aggregates Rt,h

In sections 2 and 3, we have shown how to calculate the exact conditional variance, skew-

ness and kurtosis of the aggregate return Rt,h given Ωt for QGARCH(p, q) models. In this

section, we study in detail the fourth moment properties of the aggregates distribution.

We also examine by simulations how close is the distribution of the aggregates to the nor-

mal and t-distributions used to construct V̂
[2]
h and V̂

[3]
h respectively for different horizons

h. The following two sub-sections describe the design of the simulation study and report

the results.

5.1 Simulation design

We considered the QGARCH(1,1) model defined in (2) and (3) with µ = 0 and b1 = 0. The

focus is on the symmetric GARCH model as it is very commonly adopted in the financial

researches. The parameters α0 = 1, α1 = 0.1 and three values of β1 (β1 = 0.8, 0.85 and

0.895) were chosen in the simulations. The parameters µ and α0 of the GARCH(1,1) model

are only location and scaling factors which would not affect the shape of the aggregates

distribution. The parameters α1 and β1 were set to match with the common results from

real data analyses that β1 is large and α1 + β1 is close to one. The choice of α1 + β1

close to one is to capture the stylized fact of high persistent volatility. We focus on the

forecast horizons h = 1, . . . , 150 and two distributions of errors 6t in (2), namely the

standard normal distribution and the t-distribution with 5 degrees of freedom. For each

model considered, a series of sample size t = 3528 1-period returns together with their

conditional variances up to σ2t+1 were generated. Starting from time t + 1 with the σ2t+1
being fixed, N = 200, 000 replications were formed. In the ith replication, a sample path

consisting of r(i)t+1, r
(i)
t+2, . . . , r

(i)
t+h was generated and their aggregates R

(i)
t,1, R

(i)
t,2, . . . , R

(i)
t,h were

calculated.

We computed the Kolmogorov-Smirnov (K-S) one-sample goodness-of-fit test statistic

supx | SN (x)− F (x) |,
where SN(x) is the empirical distribution of R

(1)
t,h , ..., R

(N)
t,h and F (x) is the null distribution.

Here, F (x) stands for either the normal distribution for constructing V̂
[2]
h , that is, normal

with mean 0 and variance var(Rt,h | Ωt) or the t-distribution for defining V̂ [3]h , that is,

t with mean 0, variance var(Rt,h | Ωt) and kurtosis KRt,h|Ωt . The K-S test statistic

was used to measure the maximum distance between the empirical distribution of the

aggregate return Rt,h and the null distribution F (x).

5.2 Simulation results

Figures 1 and 2 summarize the simulation results of the distributions of the 1-period

return rt+h and the aggregate return Rt,h for horizons h = 1, . . . , 150. In Figure 1,
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the excess kurtosis (kurtosis - 3) was plotted against the horizon h. Excess kurtosis

measures the “tail thickness” of the distribution and a positive excess kurtosis indicates a

leptokurtic distribution. The horizontal line in each plot locates the zero excess kurtosis

which corresponds to the normality. We can see from Figure 1 that all excess kurtoses

are positive. In parts (a) to (d), the excess kurtosis of the 1-period return rt+h (dotted

line) converges to some steady value when the horizon h increases. The larger the value of

β1, the further the steady value is above zero and the longer it takes to reach the steady

value. The excess kurtosis of aggregate return Rt,h (solid line) tends to drop in the time

horizons where the 1-period return rt+h has similar kurtosis. In parts (e) and (f) that

correspond to the near nonstationary case of β1 = 0.895, both the excess kurtoses of rt+h

and Rt,h seem to increase exponentially with h. This particular finding agrees with the

characteristics of the RiskMetrics model documented in (10) and (11). The simulation

results in Figure 1 indicate that the predictive density f(Rt,h | Ωt) deviates substantially
from normality especially when α1 + β1 ≈ 1. Therefore, assuming f(Rt,h | Ωt) to be
normal in constructing V

[1]
h and V

[2]
h is arguable.

In Figure 2, we want to see how close the conditional distribution of the aggregate

return f(Rt,h | Ωt) to the normal distribution with the same variance and to the t-
distribution with the same variance and kurtosis is. In other words, these normal and t-

distributions are the null distributions for computing the K-S test statistic. The horizontal

line in each plot marks the 1% critical value of the K-S test for reference. Parts (a), (c)

and (e) of Figure 2 correspond to GARCH(1,1) models with standard normally distributed

6t. The K-S test statistic associated with the null t-distribution lies very close to the 1%

critical value while the K-S test statistic associated with the null normal distribution is well

above the 1% critical value. This indicates that the t-distribution that matches the true

conditional variance and kurtosis of f(Rt,h | Ωt) is a good approximation of the desired
conditional distribution. For GARCH(1,1) models with 6t distributed as standardized

t with 5 degrees of freedom, parts (b), (d) and (f) of Figure 2 show that the null t-

distribution is still ‘closer’ to f(Rt,h | Ωt) than the null normal distribution. Since the
case with β1 = 0.895 resembles the RiskMetrics model, it is anticipated that the pattern

of the K-S test statistics for the RiskMetrics model is very similar to Figures 2(e) and (f).

Hence, we will not be surprised if V
[3]
h derived based on the null t-distribution outperforms

V
[1]
h and V

[2]
h in the VaR estimation under the GARCH and RiskMetrics framework.

6 Comparing the four VaR estimation methods

Since the Monte Carlo estimator V̂
[4]
h approaches to Vh as the number of replications N

tends to infinity, it can be regarded as the benchmark among the four estimators discussed

in section 4 if N is large enough. In this section, we set N = 200, 000 and use the same

simulation setup in section 5 to compare the four VaR estimation methods. To facilitate
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the comparison of V̂
[1]
h , V̂

[2]
h and V̂

[3]
h with the benchmark, we compute the percentage

difference between each of the first three methods and the Monte Carlo method:

(
V̂
[i]
h

V̂
[4]
h

− 1)× 100% for i = 1, 2, 3.

We expect that good estimation methods are able to produce VaR estimates that are

close to that generated by the Monte Carlo method and so small absolute percentage

differences are desirable.

In Figure 3, the percentage differences of the three estimation methods are plotted

against the horizon h for the GARCH(1,1) model where 6t is t-distributed with 5 degrees

of freedom, p = 1% and 5% and β1 = 0.8, 0.85 and 0.895. From parts (a) to (f) of

Figure 3, V̂
[1]
h (dashed line) has the largest magnitude in percentage difference among the

three methods. The large deviation of V̂
[1]
h from V̂

[4]
h is due to the mis-scaling problem

of using the
√
h rule. By incorporating the exact variance, V̂

[2]
h (dotted line) shows great

improvement over V̂
[1]
h . However, systematic bias is recorded in V̂

[2]
h by having negative

and positive percentage differences when p = 1% and 5% respectively. This is due to

the fact that the distribution of Rt,h is leptokurtic (see Figure 1) and Rt,h is assumed to

be normal when deriving V̂
[2]
h . In terms of the magnitude of the percentage differences,

V̂
[3]
h (solid line) generally performs better than V̂

[2]
h . In the simulations using normal

distributed 6t, we observed similar results as above that V̂
[3]
h is able to produce estimates

that are closest to V̂
[4]
h among the three estimators in most horizons. For the RiskMetrics

model, the estimator V̂
[2]
h is identical to V̂

[1]
h as var(Rt,h | Ωt) = hσ2t+1. So we present only

two curves in each plot of Figure 4. Again, we can observe that V̂
[3]
h (solid line) is much

better than V̂
[2]
h (dotted line) in both probabilities p = 1% and 5% in the sense that V̂

[3]
h

is closer to the benchmark in most cases. We can also see from the percentage difference

of V̂
[2]
h that V̂

[4]
h < V̂

[2]
h when p = 1% and the opposite is true when p = 5%. The large

discrepancy between V̂
[2]
h and V̂

[4]
h for p = 1% explains the usual upward bias observed

when applying the RiskMetrics VaR estimator to real data.

To conclude, the VaR estimation method V̂ [3]h which uses t-distribution to match the

conditional variance and kurtosis is the best among the three estimation methods and

has performance similar to that of the Monte Carlo method V̂
[4]
h but can be calculated

instantly. In practice, we can use V̂
[3]
h as a substitute of V̂

[4]
h to avoid long execution time

for large N .

7 Empirical applications

In this section, we apply the four VaR estimation methods with two QGARCH(1,1) models

and the RiskMetrics model to the daily returns of seven market indices. The indices we

have used are:
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Country/City Index Period

1. Australia AOI 1990-98

2. France CAC 40 1991-98

3. Germany DAX 1991-98

4. U.K. FTSE 100 1990-98

5. Hong Kong HSI 1990-98

6. Japan Nikkei 225 1990-98

7. USA S & P 500 1990-98

For each market index, we have its daily returns for the period of 1990 to 1998 (1991 to

1998 for the France CAC 40 and Germany DAX). The models we considered here are:

(a) QGARCH, QGARCH(1,1) model with t-distributed 6t; (b) GARCH, QGARCH(1,1)

model with µ = b1 = 0 and t-distributed 6t and (c) RiskMetrics model with normally

distributed 6t. For the QGARCH and GARCH models, the parameters were obtained by

maximum likelihood estimation using the initial five years daily data rj where j = 1, . . . , t

and t ≈ 1250 (initial four years for CAC 40 and DAX: t ≈ 1000). The number of trading
days in each year is slightly different from market to market but is roughly equal to 252

days. For the RiskMetrics model, the decay factor was set to λ = 0.94 as suggested by

J.P. Morgan (1996) for daily data.

The four types of VaR estimates V̂
[i]
h for i = 1, . . . , 4 were computed based on the

models (a) to (c) for h = 5, 10 and 50 and probabilities p = 1%, 2.5% and 5% at the time

point t. The actual h-period returns Rt,h for h=5, 10 and 50 were also computed from

the daily returns of the market indices. Then, the estimation window was shifted forward

by one day and the QGARCH and GARCH parameters were re-estimated using the daily

returns rj, j = 2, . . . , t+1. The computation of VaR estimates and actual multiple period

returns were performed again at the time point t + 1. This rolling sample analysis was

repeated until the whole validation period (1995-98) was covered. At the end, the VaR

estimates V̂
[i]
h for i = 1, . . . , 4 together with the actual multiple period returns Rt,h for h

= 5, 10 and 50 were obtained at the time points t, . . . , t+ n where n ≈ 1008 (four years
validation period: 1995 to 1998). For each combination of values on the probability p,

type of VaR estimates i and horizon h, the proportion of Rt,h that falls below its VaR

estimates V̂
[i]
h denoted by p̂ was calculated. If the assumed model for the 1-period returns

is correct, we expect that a good VaR estimation method will have p̂ close to p or the

ratio p̂/p close to 1.

Table 1 lists the ratio p̂/p of the seven market indices for h = 10 in the four years

validation period (1995 to 1998). For each market index and given p, the ratios closest to 1

were put in boxes. For p = 2.5% and 5%, the ratios p̂/p do not vary much and are similar.

The major factor that determines the difference in the ratios seems to be the underlying

dynamic model we assumed for the 1-period returns. For these two moderately small
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p, it is evident that GARCH produces more reliable VaR estimates than QGARCH and

RiskMetrics. The differences among the four VaR estimation methods are small within

each model, except some cases of QGARCH. It is also interesting to note the extraordinary

large variation in the ratios of Nikkei 225.

For p = 1%, the differences in p̂/p among the four estimation methods can be sub-

stantial within each model. For example, the ratios of QGARCH vary from 1.84 to 2.86

for HSI and 0.70 to 1.89 for AOI. In the estimation of this extreme one percentile, the

boxes cluster in GARCH and locate mostly in V̂
[3]
h and V̂

[4]
h . This indicates that the third

and the Monte Carlo estimators are superior to V̂
[1]
h and V̂

[2]
h . Incorporating also the

skewness and kurtosis of Rt,h in V̂
[3]
h improves significantly the VaR estimation results.

While V̂
[3]
h and V̂

[4]
h work equally well that most closest-to-one ratios appear in using ei-

ther VaR estimators, V̂
[3]
h costs much less computational time and so it is recommended

in empirical applications. In Table 2, the holding period is shortened to 5 days (h = 5).

The estimation method V̂
[3]
h associated with GARCH is consistently the best for p = 1%

and 2.5% (except for Nikkei and AOI with p = 1%). In Table 3, the holding period is

increased to 50 days (h = 50). In this case, all the VaR estimation methods perform

equally bad when p = 1%. Allowing the mean and asymmetric parameters in QGARCH

seems to have some advantages in estimating the fifth percentile but it does not lead to

any noticeable improvement for p = 1% and 2.5%.

The overall picture we get from the tables is as follows. First, the underneath data

generating model of the return is important in the estimation of VaR. Broadly speaking,

suitable choices are either the RiskMetrics model or the symmetric GARCH model. For

the horizons h = 5 and 10, the GARCH model is likely to be a promising alternative

to the RiskMetrics model. While the QGARCH model is able to capture the volatility

asymmetry in financial markets, it seems to be too complicated in predicting the return

percentiles and thus yielding poorer performance than the GARCH model. The additional

conditional skewness of Rt,h induced by the parameters bi does not evidently help forecast

the VaR. Second, when the probability p is small, the VaR estimation method becomes

important and the estimator V̂ [3]h is usually the best or at par with other methods. So even

if we follow the RiskMetrics model, our proposed third estimator is likely to outperform

the classical V̂
[1]
h which is based on the

√
h rule.

8 Conclusions

In this article, we derive the exact conditional variance of the aggregate return. It is shown

that under the RiskMetrics model, the conditional standard deviation of the return follows

the
√
h rule. However in stationary QGARCH models, the conditional standard deviation

of the aggregate return is different from that implied by the
√
h rule and the difference

increases with the horizon h. Besides, we derive the conditional third and fourth mo-
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ments of the aggregate return which can be computed efficiently via some recursions. In

particular, the conditional kurtosis of Rt,h is found to be independent of t under the Risk-

Metrics model. From the kurtosis, we can see that the distribution of Rt,h becomes more

and more heavy-tailed as h increases. Three methods of multiple period VaR estimation

are proposed. One method is based on the exact variance of the aggregate return. The

other is to approximate the conditional distribution of the aggregate return by the skewed

t-distribution chosen to match the true conditional variance, skewness and kurtosis. The

last one is by Monte Carlo simulations.

Our simulation experiment demonstrates that the excess kurtosis of the aggregate

return are all positive. This implies that assuming Rt,h to be normal in forming mul-

tiple period VaR estimators, like that proposed in RiskMetrics, can be problematic. In

addition, the t-distribution chosen to construct V̂
[3]
h is very close to the conditional distri-

bution of the aggregate returns. Therefore, it is reasonable to observe from the numerical

comparisons that estimates based on V̂
[3]
h are very similar to the Monte Carlo estimates

obtained by a large number of replicates. Since V̂
[3]
h can be computed instantly, it is a

good alternative to the Monte Carlo estimator. We apply our VaR estimators to seven

market indices. When p = 1%, the estimator V̂
[3]
h has the best performance in most cases.
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APPENDIX

A.1 Proof of Proposition 1

For i > j > 0,

E [ r̄t+ir̄t+j | Ωt ] = E [ E [r̄t+ir̄t+j | Ωt+i−1] | Ωt ] = E [ r̄t+jE [r̄t+i | Ωt+i−1] | Ωt ] = 0,

as E [ r̄t+i | Ωt+i−1 ] = 0. Obviously, the above result implies that E [ r̄t+ir̄t+j | Ωt ] = 0, for
i, j > 0 and i W= j. The proposition follows as E [ r̄t+i | Ωt ] = 0, for i > 0. 2

A.2 Proof of Proposition 2

Recall that we have the general model

r̄t = σt 6t, 6t ∼ D(0, 1),

σ2t = αI0 +
q3
i=1

αi r̄
2
t−i +

p3
j=1

βj σ
2
t−j − 2

q3
s=1

αsbsr̄t−s.

Using the notation γt,s = E [ r̄
2
t | Ωs ], we have for k ≥ m+ 1,

γt+k,t = E
�
r̄2t+k | Ωt

=
= E

�
E
�
r̄2t+k | Ωt+k−1

=
| Ωt
=

= E

 αI0 + q3
i=1

αi r̄
2
t+k−i +

p3
j=1

βj σ
2
t+k−j − 2

q3
s=1

αsbsr̄t+k−s | Ωt


= αI0 +
q3
i=1

αi γt+k−i,t +
p3
j=1

βj γt+k−j,t,

= αI0 +
m3
i=1

φi γt+k−i,t.

The second last equality is valid becauseE
�
σ2t+k−j | Ωt

=
= E

�
E
�
r̄2t+k−j | Ωt+k−j−1

=
| Ωt
=

= E
�
r̄2t+k−j | Ωt

=
and E [ r̄t+k−j | Ωt ] = 0 when k − j ≥ 1. 2
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A.3 Derivation of the exact conditional third moment of aggregates

Define Tt+k,t+h = E
�
r̄t+kr̄

2
t+h | Ωt

=
and Lt,h = E

�
R̄t,h−1r̄2t+h | Ωt

=
. For h ≥ 2,

E
�
R̄3t,h | Ωt

=
= E

�
(R̄t,h−1 + r̄t+h)3 | Ωt

=
= E

�
R̄3t,h−1 + 3R̄

2
t,h−1r̄t+h + 3R̄t,h−1r̄

2
t+h + r̄

3
t+h | Ωt

=
= E

�
R̄3t,h−1 | Ωt

=
+ 3Lt,h.

From the above recursion, the conditional third moment of aggregates is

E
�
R̄3t,h | Ωt

=
= 3

h3
i=2

Lt,i h ≥ 2,

as E
�
R̄3t,1 | Ωt

=
= E

�
r̄3t+1 | Ωt

=
= 0, where

Lt,h = E
�
R̄t,h−1r̄2t+h | Ωt

=
= E

^
h−13
i=1

r̄t+ir̄
2
t+h | Ωt

�
=

h−13
i=1

Tt+i,t+h.

Therefore, to find the conditional third moments, it suffices to compute Tt+k,t+h. When

h = k, Tt+h,t+h = E
�
r̄t+hr̄

2
t+h | Ωt

=
= 0. If h < k, Tt+k,t+h = E

�
r̄t+kr̄

2
t+h | Ωt

=
=

E
�
r̄2t+hE[r̄t+k | Ωt+k−1] | Ωt

=
= 0. For h > k and h ≥ m+ 1,

Tt+k,t+h = E
�
r̄t+kr̄

2
t+h | Ωt

=
= E

�
E[r̄t+kr̄

2
t+h | Ωt+h−1] | Ωt

=
= E

�
r̄t+kσ

2
t+h | Ωt

=
as h > k

= E

r̄t+k
αI0 + q3

i=1

αir̄
2
t+h−i +

p3
j=1

βjσ
2
t+h−j − 2

q3
s=1

αsbsr̄t+h−s

 | Ωt


= αI0E [r̄t+k | Ωt] +
q3
i=1

αiE
�
r̄t+kr̄

2
t+h−i | Ωt

=
+

p3
j=1

βjE
�
r̄t+kσ

2
t+h−j | Ωt

=

−2
q3
s=1

αsbsE [r̄t+kr̄t+h−s | Ωt] (17)

=
q3
i=1

αiTt+k,t+h−i +
p3
j=1

βjTt+k,t+h−j − 2αh−kbh−kγt+k,tI(1 ≤ h− k ≤ q).

Using (17), Tt+k,t+h can be computed recursively. In the particular case of no vari-

ance asymmetry, i.e. bi = 0, Tt+k,t+h = Lt,h = 0 and so the conditional third moment

E
�
R̄3t,h | Ωt

=
vanishes. 2
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A.4 Derivation of the exact conditional fourth moment of aggregates

Recall that γt+h,t = E
�
r̄2t+h | Ωt

=
, K = E [64t ], m = max{p, q}, At,h = E

�
R̄4t,h | Ωt

=
,

Et,h = E
�
R̄2t,h−1r̄

2
t+h | Ωt

=
and Pt+l,t+k = E

�
r̄2t+lr̄

2
t+k | Ωt

=
. In addition, we define Qt+l,t+k

= E
�
r̄2t+lσ

2
t+k | Ωt

=
.

For h ≥ 2,

At,h = E
�
R̄4t,h | Ωt

=

= E
}p
R̄t,h−1 + r̄t+h

Q4 | Ωt]

= E
�
R̄4t,h−1 + 4R̄

3
t,h−1r̄t+h + 6R̄

2
t,h−1r̄

2
t+h + 4R̄t,h−1r̄3t+h + r̄

4
t+h | Ωt

=
= At,h−1 + 6Et,h + Pt+h,t+h. (18)

The last equality in (18) follows because

E
�
R̄3t,h−1r̄t+h | Ωt

=
= E

�
E
�
R̄3t,h−1r̄t+h | Ωt+h−1

=
| Ωt
=

= E
�
R̄3t,h−1E [r̄t+h | Ωt+h−1] | Ωt

=
= 0 as E [r̄t+h | Ωt+h−1] = 0,

and

E
�
R̄t,h−1r̄3t+h | Ωt

=
= E

�
E
�
R̄t,h−1r̄3t+h | Ωt+h−1

=
| Ωt
=

= E
�
R̄t,h−1E

�
r̄3t+h | Ωt+h−1

=
| Ωt
=

= 0 as 6t+h is symmetric about 0.

From (18), it is not difficult to see that

At,h = At,1 + 6
h3
j=2

Et,j +
h3
j=2

Pt+j,t+j, h ≥ 2, (19)

where At,1 = Kσ4t+1. Therefore, it suffices to calculate Et,j and Pt+j,t+j, j =2,..., h for

evaluating the conditional fourth moment E[R̄4t+h|Ωt]. Since Pt+l,t+k = Pt+k,t+l, we only
need to consider the two cases, (i) k = l and (ii) k < l for Pt+l,t+k. Assuming that

k ≥ m+ 1, we have

20



Case 1 : k = l

Pt+l,t+k = E
�
r̄2t+lr̄

2
t+k | Ωt

=
= E

�
r̄4t+k | Ωt

=
= E

�
E
�
r̄4t+k | Ωt+k−1

=
| Ωt
=

as k ≥ 1

= E
�
Kσ4t+k | Ωt

=

= KE


αI0 + q3

i=1

αir̄
2
t+k−i +

p3
j=1

βjσ
2
t+k−j − 2

q3
s=1

αsbsr̄t+k−s

2 | Ωt


= KE

αI20 +
X q3
i=1

αir̄
2
t+k−i

~2
+

 p3
j=1

βjσ
2
t+k−j

2 + 2αI0 q3
i=1

αir̄
2
t+k−i + 2α

I
0

p3
j=1

βjσ
2
t+k−j

+2

X q3
i=1

αir̄
2
t+k−i

~ p3
j=1

βjσ
2
t+k−j

+ 4X q3
s=1

αsbsr̄t+k−s

~2
− 4αI0

X q3
s=1

αsbsr̄t+k−s

~

−4
X q3
s=1

αsbsr̄t+k−s

~X q3
i=1

αir̄
2
t+k−i

~
− 4
X q3
s=1

αsbsr̄t+k−s

~ p3
j=1

βjσ
2
t+k−j

 | Ωt


= KE

αI20 + q3
i=1

α2i r̄
4
t+k−i + 2

33
i>i

αiαi r̄
2
t+k−ir̄

2
t+k−i +

p3
j=1

β2jσ
4
t+k−j

+2
33

j>j

βjβj σ
2
t+k−jσ

2
t+k−j + 2α

I
0

q3
i=1

αir̄
2
t+k−i + 2α

I
0

p3
j=1

βjσ
2
t+k−j

+2
q3
i=1

p3
j=1

αiβj r̄
2
t+k−iσ

2
t+k−j + 4

q3
s=1

α2sb
2
sr̄
2
t+k−s + 8

33
s>s

αsαs bsbs r̄t+k−sr̄t+k−s

−4αI0
q3
s=1

αsbsr̄t+k−s − 4
q3
s=1

q3
i=1

αsbsr̄t+k−sαir̄2t+k−i − 4
q3
s=1

p3
j=1

αsbsr̄t+k−sβjσ2t+k−j | Ωt


= K

αI20 + q3
i=1

α2iPt+k−i,t+k−i + 2
33

i>i

αiαi Pt+k−i,t+k−i

+
1

K

p3
j=1

β2jPt+k−j,t+k−j + 2
33

j>j

βjβj Qt+k−j ,t+k−j
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+ 2αI0
q3
i=1

αiγt+k−i,t + 2αI0
p3
j=1

βjγt+k−j,t + 2
q3
i=1

p3
j=1

αiβjQt+k−i,t+k−j

+4
q3
s=1

α2sb
2
sγt+k−s,t − 4

q3
s=1

q3
i=1

αsbsαiTt+k−s,t+k−i − 4
p3
j=1

q3
s>j

αsbsβjTt+k−s,t+k−j

 . (20)

The last equality in (20) is valid because of the five results:

(a) For k ≥ m+ 1,

E
�
σ4t+k−j | Ωt

=
= E

}
1

K
E
�
r̄4t+k−j | Ωt+k−j−1

=
| Ωt
]

=
1

K
E
�
r̄4t+k−j | Ωt

=
as t+ k − j − 1 ≥ t+m− j ≥ t

=
1

K
Pt+k−j,t+k−j,

(b) For k ≥ m+ 1, j > jI,

E
�
σ2t+k−jσ

2
t+k−j | Ωt

=
= E

�
σ2t+k−j E

�
r̄2t+k−j | Ωt+k−j −1

=
| Ωt
=

= E
�
E
�
r̄2t+k−j σ

2
t+k−j | Ωt+k−j −1

=
| Ωt
=

as j > jI

= E
�
r̄2t+k−j σ

2
t+k−j | Ωt

=
as t+ k − jI − 1 ≥ t+m− jI ≥ t

= Qt+k−j ,t+k−j,

(c) E
�
r̄2t+k−i | Ωt

=
= γt+k−i,t as t+ k − i ≥ t+m+ 1− i ≥ t+ 1,

(d) E
�
σ2t+k−j | Ωt

=
= γt+k−j,t, as t+ k − j ≥ t+m+ 1− j ≥ t+ 1.

(e) For s > j,

E
�
r̄t+k−sσ2t+k−j | Ωt

=
= E

�
r̄t+k−sE

�
r̄2t+k−j | Ωt+k−j−1

=
| Ωt
=

= E
�
E
�
r̄t+k−sr̄2t+k−j | Ωt+k−j−1

=
| Ωt
=

as t+ k − s < t+ k − j

= Tt+k−s,t+k−j .
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For s ≤ j,

E
�
r̄t+k−sσ2t+k−j | Ωt

=
= E

�
E
�
r̄t+k−sσ2t+k−j | Ωt+k−s−1

=
| Ωt
=

= E
�
σ2t+k−jE [r̄t+k−s | Ωt+k−s−1] | Ωt

=
as t+ k − j < t+ k − s

= 0.

Case 2: k < l

Pt+k,t+l = E
�
r̄2t+kr̄

2
t+l | Ωt

=
= E

�
E
�
r̄2t+kr̄

2
t+l | Ωt+l−1

=
| Ωt
=

as t+ l − 1 ≥ t

= E
�
r̄2t+kσ

2
t+l | Ωt

=
as l > k

= E

r̄2t+k
αI0 + q3

i=1

αir̄
2
t+l−i +

p3
j=1

βjσ
2
t+l−j − 2

q3
s=1

αsbsr̄t+l−s

 | Ωt


= αI0γt+k,t +
q3
i=1

αiE
�
r̄2t+kr̄

2
t+l−i | Ωt

=
+

p3
j=1

βjE
�
r̄2t+kσ

2
t+l−j | Ωt

=

−2
q3
s=1

αsbsE
�
r̄2t+kr̄t+l−s | Ωt

=

= αI0γt+k,t +
q3
i=1

αiPt+k,t+l−i +
p3
j=1

βjQt+k,t+l−j − 2
q3
s=1

αsbsTt+l−s,t+k. (21)

Therefore, recursive formulas for Pt+k,t+l are established in (20) and (21). For k, l ≥ m+1,
the following equation is used to evaluate Qt+l,t+k:

Qt+l,t+k = E
�
r̄2t+lσ

2
t+k | Ωt

=

= E

r̄2t+l
αI0 + q3

i=1

αir̄
2
t+k−i +

p3
j=1

βjσ
2
t+k−j − 2

q3
s=1

αsbsr̄t+k−s

 | Ωt


= αI0E
�
r̄2t+l | Ωt

=
+

q3
i=1

αiE
�
r̄2t+lr̄

2
t+k−i | Ωt

=
+

p3
j=1

βjE
�
r̄2t+lσ

2
t+k−j | Ωt

=
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−2
q3
s=1

αsbsE
�
r̄2t+lr̄t+k−s | Ωt

=

= αI0γt+l,t +
q3
i=1

αiPt+l,t+k−i +
p3
j=1

βjQt+l,t+k−j − 2
q3
s=1

αsbsTt+k−s,t+l. (22)

Given the initial values Pt+l,t+k andQt+l,t+k, l, k = 1, ...,m, we can obtain Pt+j,t+j , j = 2,...,

h in (19) via the recursions in (20), (21) and (22) by calculating Pt+1,t+m+1, · · · , Pt+m+1,t+m+1,
Qt+m+1,t+1, · · · , Qt+m+1,t+m+1, Qt+1,t+m+1, · · · , Qt+m,t+m+1, Pt+1,t+m+2, · · · , Pt+m+2,t+m+2,
Qt+m+2,t+1, · · · , Qt+m+2,t+m+2, Qt+1,t+m+2, · · · , Qt+m+1,t+m+2, · · · . The above calculation
can be further simplified by noting that for k > l ≥ 1,

Qt+l,t+k = E
�
r̄2t+lσ

2
t+k | Ωt

=
= E

�
r̄2t+l E

�
r̄2t+k | Ωt+k−1

=
| Ωt
=

= E
�
E
�
r̄2t+lr̄

2
t+k | Ωt+k−1

=
| Ωt
=
= E

�
r̄2t+lr̄

2
t+k | Ωt

=
= Pt+l,t+k,

and for l ≥ 1,

Qt+l,t+l = E
�
r̄2t+lσ

2
t+l | Ωt

=
= E

�
E
�
r̄2t+lσ

2
t+l | Ωt+l−1

=
| Ωt
=

= E
�
σ2t+lE

�
r̄2t+l | Ωt+l−1

=
| Ωt
=
= E

�
σ4t+l | Ωt

=
=
1

K
Pt+l,t+l. (23)

According to (19), it suffices to calculate Et,j, j = 2,..., h for solving At,h. For h ≥ m+1,

Et,h = E
�
R̄2t,h−1r̄

2
t+h | Ωt

=
= E

�
E
�
R̄2t,h−1r̄

2
t+h | Ωt+h−1

=
| Ωt
=

= E
�
R̄2t,h−1E

�
r̄2t+h | Ωt+h−1

=
| Ωt
=

= E
�
R̄2t,h−1σ

2
t+h | Ωt

=

= E

R̄2t,h−1
αI0 + q3

i=1

αir̄
2
t+h−i +

p3
j=1

βjσ
2
t+h−j − 2

q3
s=1

αsbsr̄t+h−s

 | Ωt


= αI0E
�
R̄2t,h−1 | Ωt

=
+

q3
i=1

αiE
�
R̄2t,h−1r̄

2
t+h−i | Ωt

=
+

p3
j=1

βjE
�
R̄2t,h−1σ

2
t+h−j | Ωt

=

− 2
q3
s=1

αsbsE
�
R̄2t,h−1r̄t+h−s | Ωt

=
. (24)
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Now, for i = 1, · · · , q,

E
�
R̄2t,h−1r̄

2
t+h−i | Ωt

=
= E


R̄t,h−i−1 + h−13

l=h−i
r̄t+l

2 r̄2t+h−i | Ωt


= E
�p
R̄2t,h−i−1 + r̄

2
t+h−i + · · ·+ r̄2t+h−1

Q
r̄2t+h−i | Ωt

=

= E
�
R̄2t,h−i−1r̄

2
t+h−i | Ωt

=
+

h−13
l=h−i

E
�
r̄2t+lr̄

2
t+h−i | Ωt

=

= Et,h−i +
h−13
l=h−i

Pt+l,t+h−i (25)

The second equality in (25) follows because for l ≥ h− i,

E
�
R̄t,h−i−1r̄t+lr̄2t+h−i | Ωt

=
= E

�
E
�
R̄t,h−i−1r̄2t+h−ir̄t+l | Ωt+l−1

=
| Ωt
=

as t+ l ≥ t+ h− i ≥ t+m− i ≥ t

= E
�
R̄t,h−i−1E

�
r̄2t+h−ir̄t+l | Ωt+l−1

=
| Ωt
=

as l ≥ h− i

= 0,

and E
�
r̄t+lr̄t+l r̄

2
t+h−i | Ωt

=
= 0 for l, lI ≥ h− i and l W= lI. Similarly, for j = 1, · · · , p,

E
�
R̄2t,h−1σ

2
t+h−j | Ωt

=
= E

}p
R̄t,h−j−1 + r̄t+h−j + · · ·+ r̄t+h−1

Q2
σ2t+h−j | Ωt

]

= E
�p
R̄2t,h−j−1 + r̄

2
t+h−j + · · ·+ r̄2t+h−1

Q
σ2t+h−j | Ωt

=

= E
�
R̄2t,h−j−1σ

2
t+h−j | Ωt

=
+ E

 h−13
l=h−j

r̄2t+lσ
2
t+h−j | Ωt



= E
�
R̄2t,h−j−1E

�
r̄2t+h−j | Ωt+h−j−1

=
| Ωt
=
+

h−13
l=h−j

E[r̄2t+lσ
2
t+h−j | Ωt]

= E
�
R̄2t,h−j−1r̄

2
t+h−j | Ωt

=
+

h−13
l=h−j

E[r̄2t+lσ
2
t+h−j | Ωt]

= Et,h−j +
h−13
l=h−j

Qt+l,t+h−j. (26)
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The second equality in (26) follows because for l ≥ h− j,

E
�
R̄t,h−j−1r̄t+lσ2t+h−j | Ωt

=
= E

�
E
�
R̄t,h−j−1r̄t+lσ2t+h−j | Ωt+l−1

=
| Ωt
=

as t+ l − 1 ≥ t+ h− j − 1 ≥ t+m− j ≥ t

= E
�
R̄t,h−j−1σ2t+h−jE [r̄t+l | Ωt+l−1] | Ωt

=
as h− j ≤ l

= 0,

and E
�
r̄t+lr̄t+l σ

2
t+h−j | Ωt

=
= 0 for l, lI ≥ h− j and l W= lI. Next, for h ≥ m+ 1 > s,

E
�
R̄2t,h−1r̄t+h−s | Ωt

=

= E


R̄t,h−s−1 + h−13

l=h−s
r̄t+l

2 r̄t+h−s | Ωt


= E

R̄2t,h−s−1 + h−13
l=h−s

r̄2t+l + 2R̄t,h−s−1
h−13
l=h−s

r̄t+l + 2
h−13
l=h−s

h−13
l >l

r̄t+lr̄t+l

 r̄t+h−s | Ωt


= E
�
r̄3t+h−s | Ωt

=
+

h−13
l=h−s+1

E
�
r̄2t+lr̄t+h−s | Ωt

=
+ 2E

�
R̄t,h−s−1r̄2t+h−s | Ωt

=

=
h−13

l=h−s+1
Tt+h−s,t+l + 2Lt,h−s as 6t+h−s is symmetric about zero. (27)

The third equality of (27) follows because E
�
R̄2t,h−s−1r̄t+h−s | Ωt

=
= 0 as h − s − 1 ≥ 0,

E
�
R̄t,h−s−1r̄t+lr̄t+h−s | Ωt

=
= 0 for l > h − s and E [r̄t+lr̄t+l r̄t+h−s | Ωt] = 0 for l, lI ≥

h − s, l W= lI. Substituting (25), (26) and (27) into (24), we end up with the following
equation:

Et,h = αI0
h−13
i=1

γt+i,t +
q3
i=1

αi

Et,h−i + h−13
l=h−i

Pt+l,t+h−i

+ p3
j=1

βj

Et,h−j + h−13
h−j
Qt+l,t+h−j



−2
q3
s=1

αsbs

 h−13
l=h−s+1

Tt+h−s,t+l + 2Lt,h−s

 , (28)

h ≥ m+ 1, which enables us to compute Et,h recursively. 2
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A.5 The exact conditional kurtosis of aggregates under RiskMetrics

From (20), we can see that under RiskMetrics, that is, the special case of p = q = 1,

µ = α0 = b1 = 0 implying rt = r̄t and Rt,h = R̄t,h, α1 = 1 − λ and β1 = λ, for h ≥ 2,

Pt+h,t+h = K

^
(1− λ)2Pt+h−1,t+h−1 +

λ2

K
Pt+h−1,t+h−1 + 2λ(1− λ)Qt+h−1,t+h−1

�

= GPt+h−1,t+h−1,

where G = (K − 1)(1− λ)2 + 1. The last equality follows because of (23). Knowing that
Pt+1,t+1 = Kσ

4
t+1, we get Pt+h,t+h = KG

h−1σ4t+1 and Krt+h|Ωt = KG
h−1 for h ≥ 1.

In order to obtain At,h = E[R4t,h | Ωt] under RiskMetrics, it suffices to derive Et,j.
From (28), for j ≥ 2, we have

Et,j = Et,j−1 + (1− λ+
λ

K
)Pt+j−1,t+j−1 = Et,j−1 +HKGj−2σ4t+1,

where H = 1− λ+ λ
K
. The above implies that

Et,j = Et,2 +HK
G(Gj−2 − 1)
G− 1 σ4t+1

= HK
Gj−1 − 1
G− 1 σ4t+1 (29)

where

Et,2 = E
�
r2t+1r

2
t+2 | Ωt

=
= E

�
r2t+1σ

2
t+2 | Ωt

=
= E

�
(1− λ)r4t+1 + λr2t+1σ

2
t+1 | Ωt

=
= [K(1− λ) + λ] σ4t+1 = HK σ4t+1.

Substituting (29) and Pt+h,t+h = KG
h−1σ4t+1 into (19), we get

At,h = K

^
1 +

h3
i=2

F
(Gi−1 − 1)( 6H

G− 1 + 1) + 1
k�

σ4t+1

= K

^
h+

X
Gh − 1
G− 1 − h

~w
6H

G− 1 + 1
W�

σ4t+1

Dividing At,h by E
�
R2t,h | Ωt

=2
= h2σ4t+1 gives the result for the exact conditional kurtosis

of Rt,h. 2
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He, C. and Teräsvirta, T. (1999b), “Fourth Moment Structure of the GARCH(p, q)

Process,” Econometric Theory, 15, 824-846.

28



Ho, L.C., Burridge, P., Cadle, J. and Theobald, M. (2000), “Value-at-Risk: Applying

the Extreme Value Approach to Asian Markets in the Recent Financial Turmoil,”

Pacific-Basin Finance Journal, 8, 249-275.

Jorion, P. (1997), Value at Risk: The New Benchmark for Controlling Market Risk,

Chicago: Irwin.

J.P. Morgan (1996), “RiskMetrics Technical Document,” Fourth edition, New York.

Lucas, A. (2000), “A Note on Optimal Estimation From a Risk-Management Perspective

Under Possibly Misspecified Tail Behavior,” Journal of Business and Economic

Statistics, 18, 31-39.

Sentana, E. (1991), “Quadratic ARCH Models: A Potential Reinterpretation of ARCH

Models as Second-order Taylor Approximations,” Working paper, London School of

Economics and Political Science, London.

Serfling, R.J. (1980), Approximation Theorems of Mathematical Statistics, New York:

Wiley.

Tanner, M.A. (1993), Tools for Statistical Inference: Methods for the Exploration of Pos-

terior Distributions and Likelihood Functions, Second edition, New York: Springer-

Verlag.

Theodossiou, P. (1998), “Financial Data and the Skewed Generalized T Distribution,”

Management Science, 44, 1650-1661.

Tsay, R.S. (2002), Analysis of Financial Time Series, New York: Wiley.

29



Table 1: Ratio of the proportion p̂ of 10-day returns less than the estimated Vh to the
actual probability p (h = 10)

QGARCH GARCH RiskMetrics

V̂
[1]
h V̂

[2]
h V̂

[3]
h V̂

[4]
h V̂

[1]
h V̂

[2]
h V̂

[3]
h V̂

[4]
h V̂

[2]
h V̂

[3]
h V̂

[4]
h

p = 1%

HSI 2.76 2.86 2.02 1.84 2.35 2.35 1.84 1.94 2.25 1.94 1.94

Nikkei 0.82 0.51 0.10 0.20 1.02 0.92 0.82 0.82 1.12 1.02 1.02

SP500 2.10 2.10 1.50 1.50 1.50 1.50 1.20 1.30 1.50 1.50 1.50

AOI 1.89 1.79 0.70 0.70 1.20 1.10 0.90 0.90 1.40 1.20 1.20

FTSE 2.40 2.40 1.60 1.50 1.40 1.40 1.20 1.20 1.20 0.90 0.90

CAC 1.11 1.11 0.91 0.91 0.71 0.71 0.61 0.71 1.22 1.12 0.91

DAX 2.92 2.62 2.12 1.92 2.12 2.02 1.51 1.41 2.62 2.22 2.12
p = 2.5%

HSI 1.96 1.88 1.61 1.63 1.51 1.51 1.47 1.43 1.51 1.47 1.47

Nikkei 0.57 0.45 0.21 0.29 0.86 0.78 0.74 0.78 1.18 1.14 1.14

SP500 1.36 1.48 1.08 1.24 0.96 0.96 0.96 0.96 0.92 0.92 0.88

AOI 1.47 1.43 1.08 1.16 1.04 1.04 1.04 1.04 1.20 1.16 1.12

FTSE 1.48 1.40 1.32 1.32 0.96 0.96 0.92 0.96 1.00 0.96 0.96

CAC 0.73 0.77 0.69 0.69 0.69 0.69 0.69 0.69 0.89 0.89 0.93

DAX 1.81 1.73 1.49 1.53 1.53 1.41 1.41 1.41 1.53 1.49 1.53
p = 5%

HSI 1.96 1.78 1.72 1.80 1.41 1.27 1.39 1.37 1.39 1.41 1.41

Nikkei 0.73 0.53 0.44 0.55 0.90 0.82 0.92 0.92 1.20 1.25 1.22

SP500 1.02 0.96 0.94 0.96 0.74 0.74 0.76 0.76 0.72 0.74 0.74

AOI 1.31 1.27 1.18 1.24 0.96 0.96 0.96 0.96 1.14 1.18 1.16

FTSE 1.06 1.04 0.92 1.00 0.72 0.72 0.72 0.70 0.82 0.82 0.82

CAC 0.95 1.01 0.95 0.95 0.75 0.75 0.75 0.75 0.95 0.97 0.95

DAX 1.25 1.23 1.23 1.23 0.97 0.99 1.03 1.01 1.03 1.05 1.03

Figures in the boxes are the ratios p̂/p closest to 1
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Table 2: Ratio of the proportion p̂ of 5-day returns less than the estimated Vh to the
actual probability p (h = 5)

QGARCH GARCH RiskMetrics

V̂
[1]
h V̂

[2]
h V̂

[3]
h V̂

[4]
h V̂

[1]
h V̂

[2]
h V̂

[3]
h V̂

[4]
h V̂

[2]
h V̂

[3]
h V̂

[4]
h

p = 1%

HSI 3.35 3.25 2.57 2.64 2.64 2.64 2.03 2.24 3.05 2.64 2.54

Nikkei 1.02 0.81 0.43 0.51 1.32 1.22 0.81 0.81 1.52 1.32 1.22

SP500 2.98 3.08 1.99 2.09 1.69 1.69 0.99 1.29 1.79 1.69 1.69

AOI 2.08 1.88 1.59 1.59 1.59 1.49 1.49 1.39 2.28 2.18 2.08

FTSE 2.38 2.38 2.18 2.09 2.09 1.99 1.79 1.89 2.28 2.28 2.28

CAC 1.41 1.41 1.11 1.11 1.11 1.11 1.01 0.91 1.41 1.31 1.31

DAX 2.41 2.41 2.01 2.11 2.01 2.01 1.71 1.81 2.01 1.81 1.81
p = 2.5%

HSI 2.07 2.03 1.73 1.59 1.63 1.50 1.50 1.50 1.79 1.79 1.79

Nikkei 0.89 0.89 0.43 0.53 1.02 0.98 0.94 0.94 1.30 1.30 1.30

SP500 1.95 1.99 1.51 1.71 1.39 1.39 1.31 1.35 1.31 1.31 1.31

AOI 1.43 1.43 1.35 1.39 1.23 1.31 1.19 1.23 1.47 1.47 1.47

FTSE 1.47 1.47 1.43 1.47 1.27 1.23 1.23 1.23 1.35 1.31 1.35

CAC 1.41 1.45 1.33 1.25 1.13 1.13 1.13 1.17 1.33 1.17 1.21

DAX 1.44 1.44 1.32 1.32 1.28 1.24 1.24 1.24 1.44 1.40 1.36
p = 5%

HSI 1.77 1.71 1.81 1.81 1.38 1.30 1.54 1.46 1.54 1.57 1.59

Nikkei 0.83 0.81 0.81 0.81 1.08 1.02 1.08 1.10 1.16 1.18 1.16

SP500 1.45 1.45 1.43 1.45 1.01 1.01 1.03 1.03 1.01 1.01 0.99

AOI 1.15 1.15 1.11 1.11 1.03 1.01 1.05 1.07 1.09 1.11 1.11

FTSE 1.25 1.25 1.15 1.17 0.89 0.89 0.89 0.89 1.03 1.09 1.05

CAC 1.19 1.17 1.19 1.19 1.09 1.09 1.09 1.11 1.21 1.21 1.21

DAX 1.30 1.28 1.22 1.28 1.06 1.04 1.08 1.12 1.12 1.14 1.12

Figures in the boxes are the ratios p̂/p closest to 1
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Table 3: Ratio of the proportion p̂ of 50-day returns less than the estimated Vh to the
actual probability p (h = 50)

QGARCH GARCH RiskMetrics

V̂
[1]
h V̂

[2]
h V̂

[3]
h V̂

[4]
h V̂

[1]
h V̂

[2]
h V̂

[3]
h V̂

[4]
h V̂

[2]
h V̂

[3]
h V̂

[4]
h

p = 1%

HSI 6.50 6.50 4.31 4.37 5.11 4.69 3.51 3.62 3.09 2.88 2.88

Nikkei 1.28 0.00 0.00 0.00 2.23 0.85 0.21 0.32 3.51 2.34 2.34

SP500 2.70 2.81 1.36 1.66 0.31 0.31 0.00 0.00 0.31 0.10 0.10

AOI 2.28 1.04 0.10 0.10 0.10 0.10 0.10 0.10 0.00 0.00 0.00

FTSE 2.49 2.49 2.09 2.08 1.77 1.77 1.66 1.66 1.66 1.66 1.66

CAC 2.43 2.43 2.11 2.11 2.01 2.01 2.01 2.01 2.01 2.01 2.01

DAX 3.68 3.89 3.67 3.36 2.84 2.84 2.84 2.84 2.94 2.73 2.73
p = 2.5%

HSI 3.28 3.66 3.17 3.28 2.64 2.51 2.47 2.47 2.34 2.22 2.22

Nikkei 1.74 0.47 0.00 0.13 2.13 1.58 1.40 1.45 2.51 2.51 2.47

SP500 1.25 1.25 1.17 1.21 0.83 0.83 0.83 0.83 0.83 0.79 0.79

AOI 1.74 1.41 0.87 0.87 0.12 0.12 0.12 0.12 0.46 0.33 0.33

FTSE 1.16 1.16 1.13 1.16 0.92 0.92 0.92 0.92 0.92 0.92 0.92

CAC 1.14 1.27 1.10 1.18 0.97 0.97 0.89 0.93 1.06 0.93 0.93

DAX 1.64 1.76 1.79 1.68 1.34 1.43 1.43 1.39 1.30 1.30 1.30
p = 5%

HSI 2.26 2.32 2.22 2.32 1.68 1.81 1.94 1.94 1.66 1.70 1.70

Nikkei 1.38 0.66 0.38 0.66 2.02 1.70 1.85 1.83 2.21 2.26 2.26

SP500 0.89 0.79 0.67 0.67 0.54 0.52 0.54 0.54 0.54 0.54 0.54

AOI 1.29 1.27 1.08 1.12 0.44 0.37 0.39 0.37 0.44 0.48 0.46

FTSE 0.85 0.89 0.84 0.85 0.56 0.56 0.56 0.56 0.56 0.56 0.56

CAC 0.87 0.84 0.76 0.78 0.68 0.61 0.61 0.65 0.70 0.70 0.72

DAX 1.01 1.03 1.10 1.01 0.82 0.86 0.86 0.86 0.82 0.84 0.84

Figures in the boxes are the ratios p̂/p closest to 1
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Figure 1: Plots of the true excess kurtosis (kurtosis - 3) as a function of horizon h for

both 1-period return rt+h (dotted line) and aggregate return Rt,h (solid line) generated

from a GARCH(1,1) process. Parts (a) and (b) are for β1 = 0.80, parts (c) and (d) are

for β1 = 0.85, and parts (e) and (f) are for β1 = 0.895. Parts (a), (c) and (e) are for

normal distributed 6t, and parts (b), (d) and (f) are for t-distributed 6t with 5 degrees of

freedom.
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Figure 2: Plots of the K-S test statistic (T-stat) as a function of horizon h for the aggregate

return Rt,h generated from a GARCH(1,1) process. The horizontal line is the critical

value of the K-S test at 1% significance level. The dotted line represents T-stat of the

null normal distribution with variance var(Rt,h|Ωt) and the solid line represents T-stat
of the null t-distribution with variance var(Rt,h|Ωt) and kurtosis KRt,h|Ωt . Parts (a) and
(b) are for β1 = 0.80, parts (c) and (d) are for β1 = 0.85, and parts (e) and (f) are for

β1 = 0.895. Parts (a), (c) and (e) are for normal distributed 6t, and parts (b), (d) and (f)

are for t-distributed 6t with 5 degrees of freedom.
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Figure 3: Plots of the percentage difference between V̂
[1]
h and V̂

[4]
h (dashed line), V̂

[2]
h

and V̂
[4]
h (dotted line), and V̂

[3]
h and V̂

[4]
h (solid line) as a function of the horizon h for

GARCH(1,1) model, 6t is t-distributed with 5 degrees of freedom. Parts (a) and (b) are

for β1 = 0.80, parts (c) and (d) are for β1 = 0.85, and parts (e) and (f) are for β1 = 0.895.

Parts (a), (c) and (e) are for p = 1%, and parts (b), (d) and (f) are for p = 5%
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Figure 4: Plots of the percentage difference between V̂
[2]
h and V̂

[4]
h (dotted line), and V̂

[3]
h

and V̂
[4]
h (solid line) as a function of the horizon h for the RiskMetrics model, 6t is normal.

Parts (a) and (b) are for λ = 0.94, and parts (c) and (d) are for λ = 0.97. Parts (a) and

(c) are for p = 1%, and parts (b) and (d) are for p = 5%
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