
Measuring Provisions for Collateralised Retail Lending

C. H. Hui*1, C. F. Lo2, T. C. Wong1 and P. K. Man2

1Banking Policy Department

Hong Kong Monetary Authority

55th Floor, Two International Financial Centre,

8 Finance Street, Central, Hong Kong, China

  Tel: (852) 2878 1485.  Fax: (852) 2878 1899

Email: Cho-Hoi_Hui@hkma.gov.hk

2Physics Department

The Chinese University of Hong Kong

Shatin, Hong Kong, China

JEL Classification: C60, G13, G28

Keywords: credit risk, provisioning, retail lending

                                                
∗  This work is partially supported by the Direct Grant for Research from the Research Grants Council

of the Hong Kong SAR Government.  The conclusions herein do not represent the views of the

Hong Kong Monetary Authority.



1

Measuring Provisions for Collateralised Retail Lending

Abstract

This paper develops a simple model based on an options approach to measure

provisions covering expected losses of collateralised retail lending due to default.

The dynamics of the probability of default of retail loans is allowed to follow a mean-

reverting random process, which captures the characteristics of an economic cycle.

Based on the data of the residential mortgage market in Hong Kong, the proposed

dynamics of the probability of default is consistent with the empirical findings.  A

closed-form formula of the model is derived and used to calculate the required

provision for a pool of retail loans with the same type of collateral.  The numerical

results show that the loan-to-value ratio, correlation between the collateral value and

the probability of default of borrowers in the pool, volatility of the collateral value,

mean-reverting process of the probability of default and time horizon are the

important factors for measuring provisions.  As the parameters associated with these

factors are in general available in banks’ databases of their retail loan portfolios, the

model could be a useful quantitative tool for measuring provisions.

JEL Classification: C60, G13, G28

Keywords: credit risk, provisioning, retail lending
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1. Introduction

In many countries, the rules for loan provisioning do not aim to capture losses

accrued in banks at an early stage, but rather to consider “objective” factors that could

be taken into account by their bank supervisors.  Some countries provide principle-

based rules, with only general guidance on how to determine adequate provisioning.

This approach is common in the European Union.  In contrast, countries that issue

detailed regulations on loan classification often define quantitative minimum

provisioning requirements.  Most emerging markets take this approach (see World

Bank, 2002).  The rationale behind issuing detailed regulatory parameters could be to

level the playing field or make bank regulations more easily enforceable.  Under the

second approach, collateral is taken into account when classifying a loan, for

example, to a more favourable category than that reflecting its own risk and

determining the level of provisions accordingly.  The regulator in Australia on the

other hand allows banks to set provisions based on their internal models.

While a central feature of provisioning systems is typically to refer to losses

that have already been incurred or are anticipated with a high degree of confidence,

provisioning requirements may differ significantly for several factors.  One of the

factors is whether provisioning requirements aim at addressing only losses that follow

from visible and identifiable events, or at establishing provisions for expected losses.

Another factor is if and how banks are expected to factor in the value of collateral.  In

many countries, the value of collateral is then subtracted from the required provisions

to determine the level of the actual provisions to be established.

Specific provisioning requirements are often designed for certain portfolio

segments, such as retail loans including residential mortgage loans and credit card

lending.  Several countries (for example Australia, France, Korea, the Netherlands,

Saudi Arabia and Singapore) do not require retail loans to be classified and
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provisioned on an individual basis but allow them to be assessed on a pooled basis.  In

Australia, for example, management is allowed to deal with small consumer loans on

a portfolio basis.

The Basel Committee on Banking Supervision is responsible for proposing

regulatory requirements, including capital and provisioning requirements, for

internationally active banks.  Typically, bank supervisors around the world adopt the

guidelines put forth by the Basel Committee.  The Basel Committee first proposed the

Basel New Capital Framework, also known as Basel II, in June 1999, with revisions

in January 2001 and June 2004 (Basel, 2004).  By year-end 2006, Basel II is expected

to replace the current Basel Accord.  Both the current and new capital adequacy

frameworks are based on the concept of a capital ratio where the numerator represents

the amount of capital of the bank has available and the denominator is a measure of the

risks faced by the bank and is referred to as risk-weighted assets.  The resulting capital

ratio must be no less than 8%.

According to the proposals in Basel II, banks will be allowed to calculate

regulatory capital charges for their credit exposures, including those in their retail

portfolios, using the standardised approach or the internal ratings-based (IRB) approach.

The standardised approach allows less sophisticated banks to use external credit

ratings to classify their corporate, bank and sovereign assets into risk classes and to

apply different defined risk weights to other assets including retail exposures.  Over

time, banks are expected to evolve to the IRB approach, which rely on the bank’s own

experience in determining the risk components of various asset classes.

The IRB calculation of risk-weighted assets for credit exposures relies on four

basic risk components: (i) probability of default (PD), which measures the likelihood

that the borrower will default over a given time horizon; (ii) loss-given-default (LGD),

which measures the proportion of the exposure (after taking the presence and type of
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collateral into account) that will be lost if a default occurs; (iii) exposure-at-default,

which measures the bank’s exposure at the time of default; and (iv) effective maturity.

Different risk-weight functions based on the risk components are used by the IRB bank

for calculating the corresponding risk-weighted assets of different types of credit

exposures.  There are three distinct IRB risk-weight functions for different classes of

retail exposures: (i) residential mortgages; (ii) revolving credit, and (iii) other retail

loans.

Under the framework of Basel II, the IRB banks will also be required to compare

their actual provisions with expected losses (see Basel, 2004).  Any shortfall (i.e. the

expected loss amount exceeds the provision amount) should be deducted from Tier 1 and

Tier 2 capital of the bank and any excess (i.e. the provision amount exceeds the expected

loss amount) will be eligible for inclusion in Tier 2 capital subject to a cap set by

individual bank supervisors.  It is therefore important to ensure adequate provisions

being provided by banks against expected losses.  Basel II defines expected loss as

12.5 times PD times LGD times exposure-at-default (see Basel, 2004).  This makes

the assumption that the PD and LGD are independent variables, i.e. uncorrelated.  The

time horizon of the PD and LGD estimates is defined to be one year.  It is however

noted that defaults are likely to be clustered during times of economic distress and

LGD may be correlated with default rates.  For example, an increase in defaults in

residential mortgage loans leads to an increase in the supply of properties associated

with those defaulted loans, and correspondingly to a reduction in their prices and to

larger losses for banks.

The effects of the correlation between PD and LGD (including collateral

value) on credit risk measures have been considered in the context of corporate loans

in recent years.  In Frye’s (2000a) structural model which draw from the conditional

approach suggested by Finger (1999) and Gordy (2000), collateral and asset values of
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firms (i.e. borrowers) are modelled using a single index based on a systematic and an

idiosyncratic risk factor (the state of the economy).  Correlations between PD and

LGD result from join dependence of collateral and asset of value of borrowers on

systematic risk factors arising from economic cycles.  Frye’s (2000b) empirical

analysis shows a strong positive correlation between default rates and LGD for

corporate bonds.  The results allow him to conclude that the economic cycle can

produce a double misfortune involving greater-than-average default rate and poor-

than-average recoveries.

By incorporating collateral value uncertainty to LGD, Jokivuolle and Peura

(2003) propose a model of risky debt in which collateral value is correlated with the

PD of a borrower.  The borrower’s PD is based on the default mechanism proposed by

Merton (1974) where the borrower default its debt if its asset value is less than its

outstanding liability at the maturity of the debt.  Their numerical studies demonstrate

the importance of factors such as collateral value volatility and correlation between

collateral value and the borrower’s asset value for the estimation of credit risk

quantity.  On a portfolio basis, Altman et al. (2002) use a US corporate bond database

covering the period 1982-2000 and find strong evidence of a positive relationship

between PD and LGD.  They explore through simulation analysis what effect

incorporating the positive correlation between PD and LGD has on the value-at-risk

for a broadly representative commercial loan portfolio.  For their particular

simulations they find that setting the correlation between the PD and LGD to zero (as

is usual practice), rather than to its estimated value, leads to a reduction in the value-

at-risk of at least one quarter.

Although several models and studies exist to guide the effects of the

relationship between PD and LGD on credit losses of corporate loans, the body of

research on retail credit risk measurement is quite sparse according to the studies
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conducted by Allen et al. (2004).  In view of this observation, Allen et al. suggest that

techniques of credit risk measurement (such as KMV’s Portfolio Manager1 and Credit

Suisse Financial Products’ Credit Risk Plus2) for corporate loans could be applied to

retail loans.  As PD is also assumed to be independent from LGD in these two

techniques, the corresponding expected losses remain simply measured as PD times

LGD.

Apart from correlation between PD and LGD, the time horizon of the

expected-loss measure, which is defined in Basel II as one year, also raises a concern

with underestimating provisioning requirements.  In order to ensuring adequate level

of provisions being provided by banks for expected losses, it is necessary for banks to

measure expected losses of retail loans for different time horizons, particularly for

long-term secured lending such as residential mortgage loans.

While losses on any single retail loan will not cause a bank to become

insolvent, Gross and Souleles (2002) find that retail borrowers were increasing willing

to default on their debt, in large part because of the falling social and legal costs of

default.  This implies that the provisioning requirements of expected losses for

individual banks which are active in retail lending could increased due to higher

default rates of the banks’ retail loans.  The Basel Committee (2001) realises that the

longer-term viability of the IRB framework would be enhanced by further

international agreement on standards for provisioning of expected loss, as capital

adequacy critically depends on accurate valuation of banks’ assets and liabilities.

                                                
1 A comparative analysis of these techniques can be found in Crouhy et al. (2000).  KMV’s Portfolio
Manager is based on the work of Black and Scholes (1973) and Merton (1974) in the pricing of
corporate bonds using a contingent-claim framework.  In Black-Scholes-Merton's structural
framework, a firm's market value of total assets is observable in principle.  Furthermore default
happens if the total asset value is lower than the value of liabilities.  Default risk is therefore equivalent
to a European put option on the firm's asset value.
2 Credit Risk Plus is on the other hand based on the theoretical underpinnings of reduced-form models
in which default time is a stopping time of some given hazard rate process and the payoff upon default
is specified exogenously.  These models have been considered by Jarrow and Turnbull (1995), Jarrow
et al. (1997), and Duffie and Singleton (1997).
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This would make it easier to revisit the IRB framework should future efforts to

consider changes in the definition of regulatory capital and/or more harmonised

provisioning rules be undertaken.  In view of the above developments, the

measurement of provisions against expected losses of retail lending secured by

collateral would be important for improving the capital adequacy framework for

banks.

The purpose of this paper is to develop a model for measuring provisions of a

pool of collateralised retail loans which have the same collateral type (e.g. residential

properties) and broadly the same loan-to-value ratio.  The model follows the

contingent-claim approach of pricing options developed by Black and Scholes (1973)

and Merton (1973).  The pool of loans is equivalent to a put option written by a bank

to its borrowers, where the borrowers could walk away by letting the bank reprocess

the collateral upon default.  The strike of the put option is the outstanding amount of

the loans.  When the borrowers default their loans, the loss incurred in the bank is the

amount of the loans less the value recovered from the sales of the collateral securing

the loans.  The loss is the same as a standard payoff of a put option.  The provision is

therefore equivalent to the option premium multiplied by the PD of borrowers in the

pool.  The model thus takes account of the stochasticity of the collateral value.

The PD of borrowers in a pool over a given time horizon is another stochastic

variable in the model.  This means that there is a probability that each loan in the pool

will default within a time period.  The dynamics of the PD of retail loans could be

assumed to follow a mean-reverting random process, which captures the

characteristics of an economic cycle.  Campbell and Dietrich (1983) find that during

the 1960s and 1970s default for insured residential mortgages has been significantly

influenced by changes in regional rates of unemployment in the US.   This finding is

consistent with the study by Agarwal and Liu (2000), that unemployment is a
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significant determinant of a household’s delinquency and bankruptcy decision by

focusing on the credit card market in the US.  As changes in unemployment rates

reflect the states of an economic cycle, the findings provide empirical evidence that

the PD of residential mortgage loans could be affect by an economic cycle.  The

mean-reverting process has also been adopted for modelling the dynamics of risk-free

interest rates with cyclical characteristics.  Interest rates appear to be pulled back to

some long-run mean level over time (see Vasicek (1977)) according to different states

of an economy cycle.3

During an economic recession, many mortgagers cannot afford the repayments

of their loans because of wage cut or even unemployment.  The default rate would

increase to a high level.  Banks however do not want to reprocess the properties of

defaulted residential mortgage loans, whose values would have been dropped and

lower than the outstanding principals of the loans.  Some banks would therefore

restructure some of their loans such that those mortgagers with financial difficulties

could still service the loans.  The default rate would not further increase significantly

and might come down to a lower mean level when the economy subsequently

recovers.  Conversely, when the default rate is low during a period of an economic

boom including the property market, banks would expand their businesses in property

lending.  A subsequent economic recession would cause the default rate to increase

rapidly from a low level toward a higher mean level.  If the above description holds,

the stochastic dynamics of the PD could be assumed to be mean-reverting in the

model.  The PD and the parameters governing its dynamics can be obtained from a

bank’s historical default data of their retail portfolios.

                                                
3 When interest rates are high, the economy tends to slow down and there is less requirement for funds
on the part of borrowers.  As a result, rates decline.  When rates are low, there tends to be a high
demand for funds on the part of borrowers.  As a result, rates tend to rise.
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We derive a closed-form formula from the model as a function of the

collateral value and PD to measure the provision of a pool of collateralised retail

loans.  The two stochastic variables are explicitly correlated in the model.  The model

allows the PD to follow a mean-reverting process.  The model parameters such as, the

volatility, correlation and drift of PD are time dependent in the derivation.  The model

structure, that fits well with the data typically available for banks, can be applied to

measuring provisions of retail lending secured by collateral.  More accurate

measurement of provisioning requirements would enhance banks’ capabilities of

managing credit risk of such lending.

The scheme of this paper is as follows.  In the following section, we develop

the model of measuring provisions based on the proposed dynamics of the PD and

collateral value.  The corresponding closed-form formula is derived.  In section 3, we

present some empirical findings of the dynamics of the PD of residential mortgage

loans and property values based on the residential mortgage market in Hong Kong.

The impact of the model parameters on required provisions is studied in section 4.  In

the last section we shall summarise our investigation.

2. Model for measuring provisions

The PD is defined as an average PD of borrowers in a pool of retail loans over

a time horizon of t.  The pool is composed of loans with the same collateral type and

broadly the same loan-to-value ratio.  The value of PD could be an average

cumulative default rate over a time horizon (say three years) calculated from a bank’s

historical data over a period of time (say ten years).  Its continuous stochastic

movement, which is denoted by D, is governed by a mean-reverting lognormal

diffusion process.  It follows the stochastic differential equation:
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( ) ( )[ ] ( ) DDDD dztdtDtt
D

dD σθκ +−= lnln . (1)

The parameter ( )tDκ  determines the speed of adjustment toward a mean PD of ( )tDθ .

( )tDσ  is the volatility of D and dzD is a standard Wiener process.  The model

parameters are time dependent.  Equation (1) implies that D drifts toward ( )tDθ  when

the level of D is different from the mean PD.  When ( )tDκ  is set equal to zero, the

dynamics of D is a lognormal diffusion process without any drift.

Let V denote the collateral value securing the loans in the pool.  V is assumed

to follow a lognormal diffusion process and governed by

( ) ( ) VVV dztdtt
V
dV σµ += (2)

where ( )tVσ  and ( )tVµ  are the volatility and the rate of return respectively of V.  This

process is considered to be valid for financial collateral such as equities and physical

collateral such as real estate collateral (see for example Kau et al. (1992)).  The

differentials of the Wiener processes dzD and dzV in the above equations are correlated

with

( )dttdzdz VD ρ= . (3)

By applying Ito’s lemma for equations (1), (2) and (3), the partial differential

equation governing the value ( )tVDP ,,  of the provision of the pool of retail loans is

( ) ( ) ( ) ( ) ( )

( ) ( )( )[ ] ( ) rP
V
PVsr

D
PDDtt

VD
PDVttt

V
PVt

D
PDt

t
P

DD

VDVD

−
∂
∂−+

∂
∂−

+
∂∂

∂+
∂
∂+

∂
∂=

∂
∂

lnln

2
1

2
1 2

2

2
22

2

2
22

θκ

σσρσσ
(4)

where r is the risk-free interest rate and s is dividend if the collateral is equities.  It is

noted that physical collateral (e.g. residential real estate) could be analogous to a

stock providing a known dividend yield.  The owner of the collateral may receive a

yield (e.g. a rental yield) equivalent to a “dividend yield”.
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The solution of equation (4) is subject to the final condition that represents the

loss incurred in a bank over a time horizon of t.  The amount of the loss depends on

the outstanding loan value L of the loans in the pool and the collateral value after time

t.   The value L is the bank’s actual exposure after taking repayments for the loan

principals over time t into account.

As the loans in the pool have broadly the same loan-to-value ratio, the pool

can be viewed as an aggregated loan.  The final condition of the provision is thus

specified as

 ( )0,max)0,,( VLDtVDP −== (5)

 where ( )0,max VL −  is the standard payoff of a put option4.  The solution of equation

(4) subject to the final condition (5) is

 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )














 +
−


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
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



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







−×


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 −=

∫

∫

1

10

0

1

0

0

2
2

'''''exp

2
''exp,,

c
czNtrsdtttttV

c
z

LNrtdttDtVDP

t

VD

tt

ησσρ

αη

(6)

 where

     ( ) ( ) ( ) ( ) ( ) ( ) ( )ttttttt D
D

DD
22

2

2
1

2
ln ησησθκα +








−= , (7)

 ( ) ( ) 


 −= ∫
t

D dttt
0

''exp κη ’ (8)

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )'''''/ln,
010 ttttdttctsrLVtVz
t

VD ησσρ∫+−−+= , (9)

 ( ) ( )
∫=

t V tdttc
0

2

1 2
'

'
σ

,                       (10)

 and N is the cumulative normal distribution function.

                                                
4 Regarding residential mortgage loans with a mortgage-insurance scheme, if an insurance coverage of
I due to default is in place, the final condition is modified as max(L � V � I, 0).
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 The detailed derivation of the solution in equation (6) is given in the

Appendix.  When the model parameters are constant or time-dependent functions

which can be integrated, ( )tz0  and ( )tc1  can be integrated analytically and equation

(6) is thus in a closed form.

 The closed-form solution in equation (6) involves nothing more complex than

the standard normal distribution function in terms of D and V.  It has an intuitive

structure.  It is composed of a put-option solution as a function of V multiplied by a

factor as a function of D.  The put-option part is a decreasing function of the collateral

value V and depends on V and L only through their loan-to-value ratio (L/V).  The

ratio therefore provides a summary measure of facility risk (i.e. LGD) and can be used

by banks for categorising internal facility ratings of retail loans.  Similarly to a put

option, the provision is an increasing function of ( )tVσ .

 The value of D affects the provision of the pool as a multiplication factor with

a scale factor of ( )tη  in the solution.  The dynamics of D affects the provision

indirectly through its correlation ρ with V.  A large and negative ρ  reduces the value

of the second minus term of the solution through ( ) ( ) ( ) ( )



 ∫ '''''exp

0
ttttdt

t

VD ησσρ  and

thus increases P(D, V, t).  This is consistent with the intuition regarding some retail

lending such as residential mortgage loans where the decrease in property prices will

increase the default rate of the loans (i.e. ρ− ), that increases the required provision.

Equation (6) also shows that the provision is an increasing function of ( )tDθ .  This

means that an increase in the mean level of D implies a higher provision of a retail

loan portfolio.  When the current D is lower (higher) than ( )tDθ , ( )tDκ  drifts D

higher (lower) toward ( )tDθ .  A corresponding increase in ( )tDκ  will increase
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(decrease) the provision.  If ( )tDκ  is sufficiently large, D would stick to ( )tDθ  with

very small random movement and becomes stationary.

3. Empirical analysis

In this section, we present some empirical findings of the dynamics of the PD

of residential mortgage loans and property values based on the data of the residential

mortgage market in Hong Kong.  The data sample is the monthly problem-loan ratio,

which is defined as the sum of the delinquency ratio (i.e. overdue more than three

months) and the rescheduled-loan ratio, of residential mortgage loans in banks and the

private domestic price index in Hong Kong.  The problem-loan ratio can be viewed as

a proxy of the default rate of the loans.  It is however noted that a one-year default

rate is expected to be higher than the problem-loans ratio as the default rate is a

cumulative figure while the number of problem loans will be reduced after writing off

the loans.  The problem-loan ratio and the private domestic price index represent the

dynamical variables of the PD (D) and the collateral value (V) specified in equation

(1) and (2) respectively.  The sample, which covers the periods from June 1998 to

February 2004 for D and from January 1993 to February 2004 for V, are published by

the Hong Kong Monetary Authority and the Rating and Valuation Department of the

Hong Kong SAR Government respectively5.  This provides with 69 observations for

D and 134 observations for V.  Using the augmented Dickey-Fuller (ADF) test and the

maximum-likelihood technique on the available monthly data, the problem-loan ratio

of residential mortgage loans is shown to follow a mean-revering process.  We also

describe the econometric approach used for estimating the model parameters relating

to D and V.

                                                
5 The data can be obtained at http://www.info.gov.hk/hkma/eng/statistics/msb/attach/T0307.xls and
http://www.info.gov.hk/rvd/property/content.htm.
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Applying Ito’s Lemma and defining DX ln=  and VY ln= , equations (1) and

(2) are respectively rewritten as:

( ) ( ) ( ) DDDDD dztσdtXtσ(t)θtκdX +



 −−= 2

2
1ln (11)

( ) ( ) VVVV dztσdttσ(t)µdY +



 −= 2

2
1 . (12)

The log values can be characterised by an Ornstein-Uhlenbeck process.  Following

Brennan and Schwartz (1982), Marsh and Rosenfeld (1983) and Dietrich-Campbell

and Schwartz (1986), we can estimate the parameters of the continuous-time model in

equations (11) and (12) using the following discrete-time econometric specification:

11 ++ ++=− t,ZtZZtt εZβαZZ           (13)

22
11 ]E[0]E[ Zt,Zt,Z σε,     ε == ++           (14)

where Z refers to X or Y.  It is worthy mentioning that the econometric specification in

equations (13) and (14) assumes that the model parameters are independent of time.

This specification is therefore regarded as a time-independent case of the model

described in section 2.  The corresponding model parameters in equations (1) and (2)

can be found by

XD βκ −= (15)

2
XD σσ = (16)

)
β
σα(θ
X

XX
D 2

2exp
2

−
+

= (17)

2

2
1

YYV σαµ += (18)

2
YV σσ = (19)

Our econometric approach is to estimate equations (13) and (14) for X (i.e.

Dln ) and Y (i.e. Vln ) using the maximum-likelihood method.  The maximum-
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likelihood technique has been used in empirical tests of continuous-time models of

interest rates by Marsh and Rosenfeld (1983), De Munnik and Schotman (1994) and

Bail (1999).  In regard of X and Y respectively, we begin by estimating models

specified in equations (13) and (14), and assuming Yβ = 0.  These specifications

assume that the dynamics of X and Y follow the model description in section 2.

Further to this estimation, we consider other model specifications.  For X, we consider

another specification by restricting the parameters in equation (13) to 0== XX βα ,

i.e. no mean-reverting process for X.  For Y, we consider a restriction of 0=Yα  in

equation (13), i.e. 22 /σµ YY = .  The appropriateness of the model restrictions for X

and Y is evaluated using the likelihood ratio test.

Table 1 presents the parameter estimates, asymptotic t-statistics, coefficient of

determination (R2) and log-likelihood statistics (LL) for the unrestricted model and the

restricted models of X and Y.  The likelihood ratio (LR) test statistics of the restricted

models are computed to evaluate the appropriateness of the model restriction.  For X,

the LR test statistic is 81.0620 and the null hypothesis of the test is 0== XX βα .  As

the test involves two restrictions on the parameters, the test statistic has a Chi-squared

distribution with two degrees of freedom ( 2
2χ ).  As the probability of the 2

2χ  variable

being larger than 5.9918 is 5% and the LR test statistic is 81.0620 (>5.9918), the null

hypothesis of 0== XX βα  is rejected at the 5% level of significance.  The test result

suggests that the unrestricted model for X is preferred and X follows a mean-reverting

process.  The parameter Xβ  is negative and implies that Dκ  is positive.  This finding

is consistent with the model description of the PD in section 2.

Further investigation is conducted to determine whether the dynamical process

of X is mean-reverting.  A unit root test provides a simple method of testing for mean

reversion.  The unit root test adopted here is the ADF test of Said and Dickey (1984).
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Applying the test for X, it requires estimating the following ordinary least squares

(OLS) regression equation:

11
1

1 +−−+
=

+ +−ϕ++=− ∑ t,Xitit

N

i
itXXtt ε)XX(XβαXX         (20)

The ADF test consists of testing the negativity of Xβ  in equation (20).  To

accommodate any serial correlation in the residuals, equation (20) is augmented with

N lagged difference terms.  The null hypothesis of the ADF test is Xβ = 0 ( Dκ = 0),

i.e. X contains a unit root.  Rejection of the null hypothesis in favour of the

alternative: Xβ < 0 ( Dκ > 0) implies that X is stationary.  Stationarity of X implies that

the mean and the variance of X are both constant over time.

In order to test the null hypothesis of the ADF test, it is necessary to know the

distribution of the statistic used for the test.  In this case, it is the distribution of the

Dickey-Fuller statistic of Xβ , which is derived by the ratio of the OLS estimate of Xβ

to its OLS standard error.  Under the null hypothesis where X contains a unit root, the

Dickey-Fuller statistic of Xβ  does not however have a limiting normal distribution.

Dickey and Fuller (1981) show that the distributions of Dickey-Fuller statistics are

complicated and, in general, do not have any known analytical forms.  It is therefore

difficult to find exact critical values for the tests.  In practice, critical values are

usually approximated through simulation.  For example, Cheung and Lai (1995)

compute critical values for any sample size and for any number of lagged difference

terms using simulation and response surface analysis.  The test adopted here is

augmented with a drift term ( Xα ) to use –3.5613 which is given by Cheung and Lai

(1995) as the critical values at the 99% confidence level.  The ADF test statistic for X
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is 0470.6−  with one lagged difference term6.  The result rejects the null of Xβ  = 0

(i.e. Dκ  = 0) at the 1% level of significance and thus suggests that X follows a mean-

reverting process.

The relative performance of the unrestricted model and the restricted model

(i.e. 0=Yα ) of Y is evaluated by the LR test statistic.  As shown in Table 1, the LR

test statistic is 0.2060.  The null hypothesis under consideration is 0=Yα .  The test

here involves a single restriction, and thus the test statistic has a Chi-squared

distribution with one degree of freedom ( 2
1χ ).  As the probability of the 2

1χ  variable

being larger than 3.8415 is 0.05 and the test statistic is 0.2060 (< 3.8415), we accept

the null hypothesis of 0=Yα  at the 5% level of significance.  The result indicates that

the restricted model is preferred and Y follows an Ornstein-Uhlenbeck process with no

mean reversion.

The model parameters relating to D and V can be obtained from the estimates

presented in Table 1.  Based on the estimation result of the unrestricted model of X

and substituting Xβ  of –0.1499 into equation (15), the parameter Dκ  in equation (1) is

estimated to be 0.1499.  Since the estimation of X is based on the monthly time series,

the annualised Dκ  is 7988.1121499.0 =× .  The long-run PD Dθ  can be calculated by

substituting the estimates of Xα , Xβ  and Xσ  from the unrestricted model of X into

equation (17).  The value of Dθ  is found to be 0.0144.7  The volatility Dσ  of D is

                                                
6 The lag length is chosen using the Akaike Information Criteria and the maximum number of lags is
set to be 10.
7 The data of the problem-loans ratio (instead of the actual default rate) are used in the estimation.  As
the number of problem loans will be reduced after writing off the loans, the long-run one-year default
rate is expected to be higher than the estimated figure here.
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obtained by substituting the estimate of Xσ  into equation (16) and Dσ  is 0.037.  The

annualised volatility of D is 1282.012037.0 =× .8

The drift Vµ  and volatility Vσ  of V in equation (2) can be estimated by

substituting the estimate of Yσ  from the restricted model of Y into equations (18) and

(19) respectively.  The values of Vµ  and Vσ  are estimated to be 0.0005 and 0.0314

respectively. The annualised Vµ  and Vσ  are found to be 006.0120005.0 =× and

1087.0120314.0 =×  respectively.

The value of ρ  in equation (3) can be approximated by the sample correlation

coefficient between the estimated series of t,Xε  and t,Yε  in equation (13).  The value

of the estimated ρ  is –0.2603.  The t-statistic9 for testing the significance of the

estimate is –2.1901.  It is noted that the test statistic has a t-distribution with 66

degrees of freedom (because of the 69 observations for D) and the 5% critical value

for a two-tail test is 1.9966± .  Since the test statistic of –2.1901 is less than –1.9966,

the null hypothesis of no correlation between t,Xε  and t,Yε  is rejected at the 5% level

of significance.

4.  Numerical results

The detailed effects of the model parameters on the model provisions required

for pools of retail loans are illustrated in the following numerical examples.  The

current collateral value V of the pool of loans is 1.  The time horizon is three years.

The average three-year PD of the pool is assumed to be D = 5% and the mean level

                                                
8 Based on the data of the property price index during the period from December 1995 to December
1998, its annualised volatility was up to 16.4%.

9 The t-statistic is calculated by 21
2
ρ

nρt
−
−= .  This t-statistic has a student-t distribution with (n-2)

degrees of freedom where n is the number of samples.
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Dθ  of D is set at 8%.  The interest rate r and “dividend” yield s are 2.5% per annum.

Different values of L are used to illustrate the model provisions for different loan-to-

value ratios.

In order to eliminate the effect of the dynamics of D on provisions in Figure 1,

that will be studied in Figure 3 below, Dκ  and ρ are set to be zero.  Figure 1 shows

that the increases in provisions depend on the loan-to-value ratio (L/V) and the

volatility of the collateral value.  For σV = 0.1, the provisions are material when the

loan-to-value ratio is larger than 0.8.  When σV increases to 0.2 and 0.3, the threshold

of materiality lowers to about L/V = 0.6.  The results reflect that provisions are still

necessary for loans in positive equity (i.e. L/V < 1), in particular where the collateral

value is volatile.  The increases in provisions with different σV are significant when

L/V is around 1.  Because the model adopts the option-pricing approach, this

observation is similar to vega risk of a European option (i.e. sensitivity to the change

in volatility of the underlying asset of the option), which is at the maximum when the

underlying asset value is equal to the strike price.  When L/V is larger than 1.6, the

impact of the changes in σV is immaterial.  This means that the volatility of collateral

value does not affect the provisioning requirements for loans which are deep in

negative equity.

Based on the model parameters in Figure 1, Figure 2 shows the percentage

changes in provisions, which are normalised by dividing by D, with changes in L/V.

The results demonstrate that the percentage changes increase with L/V and are at the

maximum of 90% when L/V is larger than 1.5.  This means that the provisioning

requirements for loans in negative equity with L/V > 1.5 increase almost linearly with

a decline in the collateral value.  The provisions for such loans may change rapidly

due to the change in the collateral value.  Figure 2 also shows that the percentage
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changes in provisions increase significantly when the loan-to-value ratios ranges from

0.8 to 1.

Figure 3 illustrates the impact of the mean-reverting process of D and the

correlation ρ  between D and V on provisions.  It considers three cases: (i) Dκ  = 0

and Dσ  = 0.22; (ii) Dκ  = 0 and Dσ  = 0.11; and (iii) Dκ  = 0.5 and Dσ  = 0.11.  The

volatility Vσ  of V is 0.3 per annum.  The provision associated a pool with ρ  = 0 and

Dκ  = 0 is 1.1%.  The numerical results show that the percentage changes in

provisions increase with the decrease (more negative) in the correlation.  The negative

ρ implies that the PD increases when the collateral value drops.  The amount of loss

due to default risk and the corresponding provision thus increases.  The changes in

provisions may be up to 30% in the case of negative ρ , Dκ  = 0 and Dσ  = 0.22.  This

means that the effect of correlation between PD and the collateral value is material on

measuring provisions.  Figure 3 shows that the increase in Dκ  reduces the changes in

provisions with ρ.  The positive Dκ  implies a stationary movement of D and the

effect on changes in provisions due to the correlation is reduced.  The result is

consistent with the property of the function zo(V, t) in the solution of equation (6),

which shows that the positive Dκ  gives a discounting effect on the covariance term

( ) ( ) ( )ttt VD σσρ .  The numerical results demonstrate that the effect of an economic

cycle (i.e. the present of a mean-reverting process) on the PD could reduce the impact

of the correlation on provisions.  Figure 3 also shows that the increase in Dσ

increases the changes in provisions with ρ, by comparing the results of the cases with

Dσ  = 0.22 and 0.11.  This observation illustrates that the volatility of the PD may

affect provisions through its correlation with the collateral value.
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The properties of the required provision-given-default, which is defined as

DtVDP /),,( , are illustrated in Figure 4 based on four cases: (i) ρ = -0.75 and Dκ  =

0; (ii) ρ = 0 and Dκ  = 0; (iii) ρ = 0.75 and Dκ  = 0; and (iv) ρ = 0 and Dκ  = 0.5.  The

volatility Vσ  and Dσ  of V and D are 0.3 and 0.11 per annum respectively.  The loan-

to-value ratio equal to 1 is used for the calculations.  The results show that the

provision-given-default increases with time horizons.  This property is consistent with

the intuition that the uncertainty of the collateral coverage increases with time.  When

the correlation ρ between D and V is negative and Dκ  is equal to zero, the rate of the

increments of the provision-given-default with time is higher than the other two cases

with higher ρ and zero Dκ .  This reflects that the negative correlation between the

default rate and collateral value increases the uncertainty of the collateral coverage for

loans over time.  For the case of ρ = 0 and Dκ  = 0.5, as the provision-given-default is

based on the current D, the mean-reverting drift of D would pull the current D = 5%

to the mean level of Dθ  = 8% over time.  Where the current PD is lower than the

mean-level PD, the mean-reverting drift would increase the provision-given-default

with time at a higher rate than the rates observed in the other three cases.  The results

in Figure 4 demonstrate that collateralised retail loans (in particular long-term

lending) require different amounts of provisions for different time horizons.

5.  Summary

This paper develops a simple model for measuring the provision for a pool of

collateralised retail loans with homogenous characteristics (i.e. the same type of

collateral and broadly the same loan-to-value ratio), where the collateral coverage is

treated as a put option with the strike price equal to the outstanding loan amount of

the pool.  The collateral value and the PD of borrowers in the pool are the two
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correlated stochastic variables in the model.  A closed-form formula of the model is

derived and used to calculate the required provision for a pool of loans over a given

time horizon.  Empirical findings based on the data of the residential mortgage market

in Hong Kong are consistent with the proposed mean-reverting dynamics of the PD of

residential mortgage loans.  The numerical results show that the loan-to-value ratio,

correlation between the collateral value and the PD, volatility of the collateral value,

mean-reverting process of the PD and time horizon are the important factors for

measuring provisions and what are their effects.  As the information associated with

these factors is in general available in banks’ retail portfolios, the model can be

readily incorporated into their internal risk management systems as a useful

quantitative tool for measuring provisions.
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Appendix

Without loss of generality, the solution P(D, V, t) is rewritten in the form:

( ) ( ) ( ) ( ) 



= ∫

tt dtttVFDtVDP
0

''exp,,, αη , (A.1)

where ( )tα  and ( )tη  are defined in equations (7) and (8) respectively.  ( )tVF ,

satisfies the following partial differential equation:

( ) ( ) ( ) ( )[ ] rF
V
FVtttsr

V
FVt

t
F

VDV −
∂
∂+−+

∂
∂=

∂
∂ σσρσ 2

2
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2
1 (A.2)

and the corresponding final condition is given by

( ) ( )0,/1max0, LVLtVF −== . (A.3)

It is then not difficult to show that ( )tVF ,  is given by (Lo and Hui, 2001) as

( ) ( ) ( )

( ) ( )[ ],exp10,;,

0,0,;,,
0

yytVKdyL

yFytVdyKtVF

−=

=

∫
∫

∞−

∞

∞− (A.4)

where

( ) ( )
( )

( )[ ]
( ) 









 −
−−=

tc
tVzy

tc
rtytVK

1

2
0

1 4
,

exp
4

exp0,;,
π

(A.5)

is the kernel of equation (A.2), and ( )tVz ,0  and ( )tc1  are defined in equations (9) and

(10) respectively.  The integral in equation (A.4) can be evaluated analytically to yield

a closed-form solution of

( ) ( ) ( )














 +
−+−
















−×−=

1

10
10

1

0

2
2

exp
2

exp,
c

cz
Ncz

c
z

NrtLtVF . (A.6)

After substituting equation (A.6) into equation (A.1), the solution of equation (6) is

obtained.
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Model
(Restriction) Xα Xβ Xσ 2R LL LR

(p-value)
2

050 ).(χ df

Unrestricted
Model of X

-0.6368
(-11.0417)

-0.1499
(-11.4593)

0.0370
(11.6261)

0.6595 190.315 - - -

Restricted Model
of X

( 0== XX βα )

- - 0.0668
(11.7126)

-0.1215 149.784 81.0620
(0.0000)

5.9918 2

Yα Yβ Yσ 2R LL LR
(p-value)

2
050 ).(χ Df

Unrestricted
Model of Y

-0.0012
(-0.4560)

- 0.0313
(16.2909)

0.0000 394.177 - - -

Restricted Model
of Y

( 0=Yα )

- - 0.0314
(16.2946)

-0.0016 394.074 0.2060
(0.6499)

3.8415 1

Table 1: This table displays the maximum likelihood estimates of alternative models
of X ( Dln ) and Y ( Vln ).  The parameter estimates with asymptotic t-statistics in
parentheses are presented for each model.  The maximised log-likelihoods (LL) for
the unrestricted models and for each of the restricted models are shown to compare
the explanatory power of the unrestricted models and restricted models.  Likelihood
ratio (LR) tests evaluate the restrictions imposed by the restricted models against the
unrestricted model.  The LR test statistics with the associated p-value, degrees of
freedom (df) and Chi-squared critical values ( 2

050 ).(χ ) at the 5% level of significance
are reported.  The parameters are estimated from the following discrete time system of
equations:

11 ++ ++=− t,ZtZZtt εZβαZZ

22
11 ]E[0]E[ Zt,Zt,Z σε,     ε == ++

where Z refers to X or Y.
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Figure 1.  Provisions of pools of loans with different loan-to-value ratios and

volatilities of collateral values for a three-year time horizon.

The volatilities of the collateral value are Vσ  = 0.1, 0.2 and 0.3.  The average three-

year PD of the pool is 5% with no mean-reverting movement (i.e. Dκ  = 0) and is

uncorrelated with the collateral value (i.e. ρ = 0).  Other parameters are r = 2.5%, s =

2.5% and Dσ  = 0.11.
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Figure 2.  Percentage changes in provisions of pools of loans with different loan-to-

value ratios and volatilities of collateral values for a three-year time horizon.

The volatilities of the collateral value are Vσ  = 0.1, 0.2 and 0.3.  The average three-

year PD of the pool is 5% with no mean-reverting movement (i.e. Dκ  = 0) and is

uncorrelated with the collateral value (i.e. ρ = 0).  Other parameters are r = 2.5%, s =

2.5% and Dσ  = 0.11.
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Figure 3.  Percentage changes in provisions of pools of loans with different

correlation between the collateral value and probability of default under different

dynamics of the probability of default.

The loan-to-value ratio (L/V) is 1 and the time horizon is three years.  The volatility of

the collateral value is Vσ  = 0.3.  The dynamics of PD is defined as: (i) Dκ  = 0 and

Dσ  = 0.22; (ii) Dκ  = 0 and Dσ  = 0.11; and (iii) Dκ  = 0.5 and Dσ  = 0.11.  The

average three-year PD of the pool is 5% with the mean level Dθ  of D at 8%.  Other

parameters are r = 2.5% and s = 2.5%.  The provision associated with ρ  = 0 and Dκ

= 0 is 1.1%.
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Figure 4.  Provision-given-default of pools of loans with different time horizons and

correlation between the collateral value and probability of default.

The loan-to-value ratio (L/V) is 1 and the volatility of the collateral value is Vσ  = 0.3.

The four lines represent (i) ρ = -0.75 and Dκ  = 0; (ii) ρ = 0 and Dκ  = 0; (iii) ρ = 0.75

and Dκ  = 0; and (iv) ρ = 0 and Dκ  = 0.5.  The mean level Dθ  of D is at 8%.  Other

parameters are r = 2.5%, s = 2.5% and Dσ  = 0.11.
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